
PTC MKS Toolkit
Using MKS AWK

PTC Inc.

PTC MKS Toolkit: Using MKS AWK

Copyright © 2020 PTC Inc. and/or Its Subsidiary Companies. All Rights
Reserved.

User and training guides and related documentation from PTC Inc. and its subsidiary
companies (collectively "PTC") are subject to the copyright laws of the United States and
other countries and are provided under a license agreement that restricts copying,
disclosure, and use of such documentation. PTC hereby grants to the licensed software
user the right to make copies in printed form of this documentation if provided on
software media, but only for internal/personal use and in accordance with the license
agreement under which the applicable software is licensed. Any copy made shall include
the PTC copyright notice and any other proprietary notice provided by PTC. Training
materials may not be copied without the express written consent of PTC. This
documentation may not be disclosed, transferred, modified, or reduced to any form,
including electronic media, or transmitted or made publicly available by any means
without the prior written consent of PTC and no authorization is granted to make copies
for such purposes. Information described herein is furnished for general information only,
is subject to change without notice, and should not be construed as a warranty or
commitment by PTC. PTC assumes no responsibility or liability for any errors or
inaccuracies that may appear in this document.

The software described in this document is provided under written license agreement,
contains valuable trade secrets and proprietary information, and is protected by the
copyright laws of the United States and other countries. It may not be copied or distributed
in any form or medium, disclosed to third parties, or used in any manner not provided for
in the software licenses agreement except with written prior approval from PTC.

UNAUTHORIZED USE OF SOFTWARE OR ITS DOCUMENTATION CAN RESULT
IN CIVIL DAMAGES AND CRIMINAL PROSECUTION.

PTC regards software piracy as the crime it is, and we view offenders accordingly. We do
not tolerate the piracy of PTC software products, and we pursue (both civilly and
criminally) those who do so using all legal means available, including public and private
surveillance resources. As part of these efforts, PTC uses data monitoring and scouring
technologies to obtain and transmit data on users of illegal copies of our software. This
data collection is not performed on users of legally licensed software from PTC and its

Using MKS AWK iii

authorized distributors. If you are using an illegal copy of our software and do not consent
to the collection and transmission of such data (including to the United States), cease
using the illegal version, and contact PTC to obtain a legally licensed copy.

Important Copyright, Trademark, Patent, and Licensing Information: See the About
Box, or copyright notice, of your PTC software.

UNITED STATES GOVERNMENT RIGHTS

PTC software products and software documentation are “commercial items” as that term
is defined at 48 C.F.R. 2.101. Pursuant to Federal Acquisition Regulation (FAR) 12.212
(a)-(b) (Computer Software) (MAY 2014) for civilian agencies or the Defense Federal
Acquisition Regulation Supplement (DFARS) at 227.7202-1(a) (Policy) and 227.7202-3
(a) (Rights in commercial computer software or commercial computer software
documentation) (FEB 2014) for the Department of Defense, PTC software products and
software documentation are provided to the U.S. Government under the PTC commercial
license agreement. Use, duplication or disclosure by the U.S. Government is subject solely
to the terms and conditions set forth in the applicable PTC software license agreement.

PTC Inc., 121 Seaport Blvd, Boston, MA 02210 USA

PTC Inc.
12015 Lee Jackson Memorial Hwy,

Suite 150
Fairfax, Virginia 22033

Phone: +1 703 803-3343
Fax: +1 703 803-3344

E-mail: MKSToolkitInfo@ptc.com

10.3-1000

iv PTC MKS Toolkit

Technical Support
To request technical support, please contact us on the PTC eSupport Portal below. In your request please
include your Service Contract Number (SCN), the name and version number of the product, your serial
number, and the operating system and version/patch level that you are using. Contact PTC Technical
Support at:

Technical Support: http://support.ptc.com/

When reporting problems, please provide a test case and test procedure, if possible. If you are following up
on a previously reported problem, please include the case number in the subject line of your correspondence.

Finally, please give us your e-mail address and telephone number so that we may contact you.

Using MKS AWK v

Table of Contents

Technical Support ..iv

1 Introduction...1

2 Basic Concepts...3

Data and Data Files...3
Records ..4
Fields ...4

The Shape of a Program..5
Simple Patterns ..5
Numbers and Strings ...7
The Print Action ..7
Miscellaneous Points ...8

Running awk Programs...9
The awk Command Line ...10
Program Files...10
Sources of Data..11

3 Simple Arithmetic ...13

Arithmetic Operations...13
Operation Ordering ...15
Formatted Output ..16

Placeholders...17
Escape Sequences ..18

Variables ...20
The Increment and Decrement Operators......................................23
Initial Values..23
Built-In Variables ..23

Arithmetic Functions ..26

4 Patterns and Regular Expressions.......................29

The Matching Operators ...30
Metacharacters ..31
Matching Expressions with Strings ..34
Pattern Ranges ..35
Multiple Conditions ..36

5 Actions and Control Structures39

vi PTC MKS Toolkit

Comments ...39
The if Statement..40
A Word on Style ...42
Compound Statements ..42
while Loops...44
for Loops...46
The next Statement ...47
The exit Statement ..47

6 String Manipulation..49

String Variables ..49
Built-In String Variables...50
String vs. Numeric Variables..52
String Concatenation...53
String Manipulation Functions ...54

7 Arrays ..57

Arrays with Integer Subscripts ...57
Generalized Arrays ...58
String Subscripts vs. Numeric Subscripts...60
Deleting Array Elements ..61
Multi-Dimensional Arrays ..61

8 User-Defined Functions...63

Function Definition...63
Recursion ..66
Call By Value..66
Passing Arrays to Functions ...67

9 Miscellaneous Topics ..69

The Getline Function ..69
Reading from the Current Input...69
Reading a Line into a String Variable ...70
Reading from a New File...70
Reading from Other Commands..71

Output to Files and Pipes ..71
Executing Programs and System Commands72
Compound Assignments ...72
The SORTGEN Example..73
Running awk Programs Without awk...74

Index ..77

Using MKS AWK 1

1Introduction

Powerful yet easy-to-use, MKS awk is the perfect programming language for
anyone who needs to work with information stored in text files. The general
purpose of awk is to read the contents of one or more files, obtain selected
pieces of information from the file(s), and present the information in a
specified format. By default, the information presented will be displayed on
your screen; however, it can be written into a file with the usual >filename
redirection construct.

awk is a good first programming language. It allows most of the logical
constructs of modern computing languages: if-else statements, while
and for loops, function calls, and so on. It is easy to learn, and lets you get
results with little effort. At the same time, it introduces all the primary
concepts of programming and prepares you for more complicated languages.

This document introduces the important principles and concepts of MKS awk,
and demonstrates how you can use them for productive programming. For
beginners, this chapter should serve as a good introduction; experienced
programmers might prefer the detailed technical information of the online
awk reference page.

Introduction

2 PTC MKS Toolkit

Using MKS AWK 3

2Basic Concepts

Every programming language has its own way of looking at the world. To
write programs in the language, you must learn to see things from the
language's point of view.

This section examines the fundamentals of awk:

 the kind of information, or data, awk works with;

 the shape of an awk program;

 how to run an awk program.

Data and Data Files
awk programs work with data. Programs can obtain data typed in from the
terminal or from the output of other commands (for example, through pipes);
but usually data come from data files. awk's data files are always text files.
This means that the files contain readable text: for example, words, numbers,
punctuation characters, and so on.

As an example, consider a data file containing information on the hobbies of
a group of people. Each line in this file gives a person's name, one of that
person's hobbies, how many hours a week that person spends on the hobby,

Basic Concepts

4 PTC MKS Toolkit

and how much money the hobby costs per year. Each of a person's hobbies
appears on a separate line. We’ve included just such a file called hobbies
installed in the ROOTDIR/samples/guide directory:

Jim reading 15 100.00
Jim bridge 4 10.00
Jim role-playing 5 70.00
Linda bridge 12 30.00
Linda cartooning 5 75.00
Katie jogging 14 120.00
Katie reading 10 60.00
John role-playing 8 100.00
John jogging 8 30.00
Andrew wind-surfing 20 1000.00
Lori jogging 5 30.00
Lori weight-lifting 12 200.00
Lori bridge 2 0.00

Records An awk data file is a collection of records. A record contains a number of
pieces of information about a single item; these pieces are called fields. In
our hobbies file, each line is a separate record, giving a complete set of
information about one of a person's hobbies.

Records are separated by a record separator character, which is usually the
newline character for awk. A newline character shows where one line of text
ends and another begins; by using the newline as a record separator, each
line of the file becomes a separate record. For convenience we will use a
newline character as a record separator in all of the following examples.

Fields A record consists of a number of fields, each of which contain a single piece
of information. For example, the hobby record

Jim reading 15 100.00

contains four fields:
Jim
reading
15
100.00

Fields should be provided in the same order in each record. That way awk
and other programs can easily access a particular piece of information in any
record.

The Shape of a Program

Using MKS AWK 5

You can easily change this
default, as discussed in “The awk
Command Line” on page 10 and
“Built-In String Variables” on
page 50.

The fields of a record are separated by one or more field separator
characters. The hobbies file uses strings of blank characters (spaces) to
separate fields. By default, awk uses blanks and/or horizontal tab characters
to separate fields.

The Shape of a Program
An awk program looks like this:

pattern {actions}
pattern {actions}
pattern {actions}
...

Each line is a separate instruction or rule. awk looks through the data files
record-by-record and executes the rules, in the given order, on each record.

Note that awk programs can only be run from the command line when
running the KornShell. If you want to run an awk program while operating
under command.com or cmd.exe, use the -f option as in

awk -f file

or run the program from within a file.

Simple Patterns A rule of the form
pattern {actions}

indicates that awk is to perform the given set of actions on every record that
meets a certain set of conditions. The conditions are given by the pattern part
of the rule.

The pattern of a rule often looks for records that have a particular value in
some field. The notation $1 stands for the first field of a record, $2 stands
for the second field, and so on. As a special case, $0 stands for the entire
record. For example, here's a simple awk rule:

$2 == "jogging" { print }

The notation == stands for is equal to; therefore, the rule means: If the
second field in a record is jogging, display the entire record.

Basic Concepts

6 PTC MKS Toolkit

This rule is a complete awk program. When you run this program on the
hobbies file, awk looks through the file record-by-record (line-by-line).
Whenever a line has jogging as its second field, awk displays the complete
record. The output from this program therefore is

Katie jogging 14 120.00
John jogging 8 30.00
Lori jogging 5 30.00

Let's take another example. Ask yourself what the following awk program
does.

$1 == "John" { print }

As you probably guessed, it displays every record that has John as its first
field. The output from the program is

John role-playing 8 100.00
John jogging 8 30.00

You can perform the same sort of search on any text database. The only
difference is that databases tend to contain a great deal more data than this
example.

These examples both use the print action; however, this action never needs
to be written explicitly. You could write the programs as

$2 == "jogging"

 and
$1 == "John"

and they would have exactly the same effect.
If an awk rule does not contain an
action, print is assumed.

The == notation is an example of a comparison operation. awk recognizes
several other types of comparison:

!= not equal
> greater than
< less than
>= greater than or equal to
<= less than or equal to

As examples, consider each of the following rules as complete programs,
and decide for yourself what the programs will do with the hobbies file.

(i) $1 != "Linda" { print }
(ii) $3 > 10
(iii) $4 < 100.00
(iv) $4 <= 100.00

The Shape of a Program

Using MKS AWK 7

These rules have the following effects.

Numbers and
Strings

In the previous examples, we put quote (") characters around Linda in (i), but
did not use quotes in any of the other rules. awk distinguishes between string
values (which are enclosed in quotes) and numeric values (which are not).

A string value is just a sequence of characters like "abc". Any sort of
characters are allowed (even digits, as in "abc123"). Strings can contain any
number of characters. A string with zero characters is called the null string
and is written "".

awk lets you use exponential or
scientific notation. Exponents are
given as e or E, followed by an
optionally signed exponent.
Thus, 1E3, 1.0e3, 10E2, and
1000 are all equivalent

A numeric value consists of digits, but it can also have a sign and a decimal
point. For example,

10 0.34 -78 +2.56 -.92

are all valid numbers in awk. awk does not let you put commas inside
numbers. For example, you must write 1000 instead of 1,000.

When awk compares numbers (with operators like > or <), it makes
comparisons in accordance with the usual rules of arithmetic. When awk
compares strings, it makes comparisons in accordance with the ASCII
collating order. This is a little like alphabetical order; for example, the
program

$1 >= "Katie"

displays the Katie, Linda, and Lori lines, which is what you would expect
from alphabetical order; however, ASCII collating order differs from
alphabetical order in a number of respects. For example, lowercase letters
are greater than uppercase ones, so that a is greater than Z.

The Print Action So far, print has been the only action discussed. As you have seen, print
can display an entire record. It can also display selected fields of the record,
as in

$2 == "bridge" { print $1 }

(i) Displays all records with a first field that is not Linda.

(ii) Displays all records with a third field that is greater than 10.
Remember that when there is no explicit action, awk
assumes print.

(iii) Displays all records with a fourth field that is less than
100.00.

(iv) Displays all records with a fourth field that is less than or
equal to 100.00.

Basic Concepts

8 PTC MKS Toolkit

This displays the first field of every record with a second field that is bridge.
The output is

Jim
Linda
Lori

print can display more than one field. If you give print a list of fields
separated by commas, as in

$1 == "Jim" { print $2,$3,$4 }

print displays the given fields separated by single blanks, as in:
reading 15 100.00
bridge 4 10.00
role-playing 5 70.00

The print action can display strings and numbers along with fields. For
example,

$1 == "John" { print "$",$4 }

displays
$ 100.00
$ 30.00

In this rule, the print action displays a string containing a $, followed by a
blank, followed by the value of the fourth field in each selected record.

As an exercise, predict the output of the following:
(i) $1 == "Lori" {print $1,"spends $", $4,"on",$2}
(ii) $2 == "jogging" {print $1,"jogs",$3,"hours a week"}
(iii) $4 > 100.00 {print $1, "has an expensive hobby"}

Miscellaneous
Points

 You can put any number of extra blanks and/or horizontal tabs into awk
patterns and actions. For example, you can say:

{ print $1 , $2 , $3 }

 You can leave out the pattern part of a rule. In this case, awk applies the
action part of the rule to every record in the file. For example,

{ print }

is a complete awk program that displays every record in the data file.

Running awk Programs

Using MKS AWK 9

 You can leave out the action part of a rule. In this case, the default action
is print. For example,

$1 == "Andrew"

is a complete awk program that displays every record with a first field
that is Andrew. This is equivalent to:

$1=="Andrew" { print }

 When an awk program contains several rules, awk applies every
appropriate rule to the first record, then every appropriate rule to the
second record, and so on. Rules are applied in order. For example,
consider the following awk program.

$1 == "Linda"
$2 == "bridge" { print $1 }

The output of this program is:
Jim
Linda bridge 12 30.00
Linda
Linda cartooning 5 75.00
Lori

awk looks through the file record-by-record. The first record to satisfy
one of the patterns is

Jim bridge 4 10.00

so awk displays the first field of the record (as dictated by the second
rule).

The next record of interest is
Linda bridge 12 30.00

This satisfies the pattern of the first rule, so the whole record is
displayed. It also satisfies the pattern of the second rule, so the first field
is displayed. awk continues through the file, record-by-record,
performing the appropriate actions when a record satisfies the pattern.

Running awk Programs
There are two ways to run awk programs: from a command line, and from a
program file.

Basic Concepts

10 PTC MKS Toolkit

The awk
Command Line

The simplest awk command line is
awk 'program' datafile

The awk program is enclosed in single quote/apostrophe (') characters. The
datafile argument gives the name of the data file. For example,

awk '$1 == "Linda"' hobbies

runs the program
$1 == "Linda"

on the data file hobbies.

If you are using the MKS KornShell (not command.com or cmd.exe), you
can type in a multi-line program within single quotes, as in:

awk '
 $1 == "Linda"
 $2 == "bridge" { print $1 }
 ' hobbies

For more information on entering
multi-line arguments, see the
Using the MKS KornShell
document available from the
Start menu.

As mentioned previously, awk assumes that blanks and/or horizontal tabs
separate fields in a record. If the data file uses different field separator
characters, you must indicate this on the command line. You can do this with
an option of the form

-Fstring

where the string lists the characters used to separate fields. For example,
awk -F":" '{ print $3 }' file.dat

indicates that the given data file uses colon (:) characters to separate record
fields. The -F option must come before the quoted program rules.

awk also allows you to define the value of variables on the command line by
using the -v option. If you want to set the value of a variable foo before the
program starts, then use the following command line:

awk -v foo=13 -f program datafile

Program Files Short programs like the ones in this chapter can be entered on a single
command line. Later chapters discuss longer programs which you cannot
type on a single line. Such programs are most easily run from a program file.

A program file is a (text) file that contains an awk program. You can create
program files with any text editor (such as vi). For example, you might
create a file named lbprog.awk that contains the lines:

$1 == "Linda"
$2 == "bridge" { print $1 }

Running awk Programs

Using MKS AWK 11

To run a program on a particular data file, use the command
awk -f progfile datafile

where progfile is the name of the file that contains the awk program and
datafile is the name of the data file. For example,

awk -f lbprog.awk hobbies

runs the program in lbprog.awk on the data in hobbies.

If the data file does not use the default separator characters, you must specify
a -F option after the progfile name, as in

awk -f prog.awk -F":" file.dat

To gain some experience using awk you should run the examples of this
chapter on the hobbies file. Run some from the command line and some
from program files.

Sources of Data If you do not specify a data file on the command line, awk reads data from
the terminal. For example, if you issue the command

awk '{ print $1 }'

awk displays the first word of every line you type. When you type in data
from the terminal, you can mark the end of the data by typing CTRL-Z. After
you type CTRL-Z, you must press ENTER.

A command line may also specify several data files, as in
awk -f progfile data1 data2 data3 ...

When awk has finished reading through the first data file data1, it goes
on to data2, and so on.

Basic Concepts

12 PTC MKS Toolkit

Using MKS AWK 13

3Simple Arithmetic

With awk you can easily perform calculations with numbers contained in
data files. This chapter discusses how awk does arithmetic and gives some
examples of programs using these features.

Note that awk, with minor differences, performs arithmetic operations in
much the same way as the C programming language; therefore, knowledge
of awk is good preparation for learning C.

Arithmetic Operations
Here's an example of an awk program that uses simple arithmetic.

$3 > 10 { print $1, $2, $3-10 }

In the print statement,
$3-10

has the value of the third field in the record, minus 10. This is the value that
print displays. If you apply this program to the hobbies file (shown in
Chapter 2: “Basic Concepts”), the output is

Jim reading 5
Linda bridge 2
Katie jogging 4
Andrew wind-surfing 10
Lori weight-lifting 2

You could say that the program worked like this: if someone spends more
than 10 hours on a hobby, the program displays the person's name, the name
of the hobby, and how many extra hours the person spends on the hobby
(that is, the number of hours more than 10).

Something like
$3-10

Simple Arithmetic

14 PTC MKS Toolkit

is called an arithmetic expression. It performs an arithmetic operation and
comes up with a result; the result of the arithmetic operation is called the
value of the expression.

awk recognizes the following arithmetic operations

The remainder operation is also known as the modulus or integer remainder
operation. The value of this expression is the integer remainder you get when
you divide A by B. For example,

7 % 3

has a value of 1, because when you divide 7 by 3, you get a result of 2 and a
remainder of 1.

The value for the exponentiation operation
A ^ B

is the value of A raised to the exponent B. For example,
3 ^ 2

has the value 9 (that is, 3*3).

Here are some programs that perform simple arithmetic with the hobbies
file. Try to figure out what they do and what they display.

(i) $1 == "Katie" { print $2, $3/7 }
(ii) { print $1, $2, $3/7 }
(iii) $1 == "Jim" { print $1, $2, "$", $4/52 }
(iv) print $1, "$", $4*1.05 }

After you have thought about the programs, run them to see if they produce
the output you have predicted. Here is our interpretation of the programs

(i) Since field three gives the average number of hours per week that a
person spends on a hobby, $3/7 shows the average number of hours

Operation Operator Example

Addition A + B 2+3 is 5

Subtraction A - B 7-3 is 4

Multiplication A * B 2*4 is 8

Division A / B 6/3 is 2

Negation - A - 9 is -9

Remainder A % B 7%3 is 1

Exponentiation A ^ B 3^2 is 9

Operation Ordering

Using MKS AWK 15

per day. Program (i) therefore displays how many hours per day
Katie spends on each of her hobbies.

(ii) This is a variation on program (i). It displays how many hours per
day each person spends on each hobby.

(iii) Field four gives the amount of money a person spent this year on a
particular hobby. Dividing this by 52 gives the average amount of
money spent per week.

(iv) If the current inflation rate is 5 per cent, multiplying this year's
expenses by 1.05 gives the amount of money the same person might
expect to spend next year. This is the information that program (iv)
displays.

Operation Ordering
Expressions can contain several operations, as in

A+B*C

As is customary in mathematics, all multiplications and divisions and
remainder operations are performed before additions and subtractions. When
handling this expression, awk performs B*C first and then adds A. The value
of

2+3*4

is therefore 14 (3*4 first, then add 2). If you want a particular operation done
first, enclose it in parentheses, as in

(A+B)*C

When evaluating this expression, awk performs the addition before the
multiplication; therefore

(2+3)*4

is 20 (2+3 first, then multiply by 4).

As an example of this, consider the program
{ print $4/($3*52) }

$4 is the amount of money a person spent on a hobby in the last year. $3 is
the average number of hours a week the person spent on that hobby, so
$3*52 is the number of hours in 52 weeks (that is, one year). $4/($3*52)
is therefore the amount of money that the person spent on the hobby per
hour.

Simple Arithmetic

16 PTC MKS Toolkit

A table providing the order for awk expressions is provided in the awk
reference page.

Formatted Output
The output of the program

$1 == "Jim" { print "$", $4/52 }

is
$ 1.92308
$ 0.192308
$ 1.34615

This output shows the amount of money per week that Jim spent on his
hobbies; however, money amounts usually have only two digits after the
decimal point. How can you change the program to make the money
amounts appear more normal? The answer is to use the printf action
instead of print. This lets you specify the format in which awk displays the
output.

A printf action looks like this:
{ printf format-string, value, value, ... }

The format-string indicates the output format. The given values give the data
to be displayed.

A format string contains two kinds of items:

 Normal characters, which are just displayed as is; and

 Placeholders, which are replaced with values given later in the printf
action.

As an example, try running the following program on the hobbies file.
$2 == "bridge" { printf "%5s plays bridge\n", $1 }

awk displays:
 Jim plays bridge
Linda plays bridge
 Lori plays bridge

The format string ends in \n; for
more information, see “Escape
Sequences” on page 18.

The format string
"%5s plays bridge\n"

has one placeholder: %5s. When printf displays its output, replacing the
placeholder with the value $1 which is the first field of the record being
examined. The rest of the format string is displayed as is.

Formatted Output

Using MKS AWK 17

Placeholders The form of the placeholder %5s tells awk how to display the associated
value. All placeholders begin with % and end in a letter. These are some of
the most common letters used in placeholders:

 c if the associated value is an integer, printf displays the character
in the native character set with that integer value; if the value is a
string, printf displays the first character of the string.

 d an integer in ‘decimal’ form (base 10)

 e a floating point number in scientific notation, as in, for example, -
d.ddddddE+dd.

 f a floating point number in conventional form, as in, for example, -
ddd.dddddd.

 g a floating point number in either e or f form, whichever is shorter;
also, non-significant zeroes are not displayed.

 o an unsigned integer in octal form (base 8).

 s a string

 x an unsigned integer in hexadecimal form (base 16).

For example, the format string
"%s %d\n"

contains two placeholders: %s represents a string and %d represents a
decimal integer.

Between the % and the letter at the end of the placeholder, you can put
additional information. If you put an integer, as in %5s, the number is used as
a width. awk displays the corresponding value using (at least) the given
number of characters; therefore in

$2 == "bridge" { printf "%5s plays bridge\n", $1 }

the value of the string $1 replaces the placeholder %5s and is always
displayed using five characters. The output is therefore

 Jim plays bridge
Linda plays bridge
 Lori plays bridge

as shown before. If you just write
$2 == "bridge" { printf "%s plays bridge\n", $1 }

without the 5, the output is:
Jim plays bridge
Linda plays bridge
Lori plays bridge

Simple Arithmetic

18 PTC MKS Toolkit

If no width is given, awk displays values using the smallest number of
characters possible.

awk also lets you put a minus sign (-) in front of the number in the width
position. The amount of output space is the same, but the information is left-
justified. For example,

$2 == "bridge" { printf "%-5s plays bridge\n", $1 }

displays:
Jim plays bridge
Linda plays bridge
Lori plays bridge

A placeholder for a floating point number may also contain a precision. You
can write this as a dot (decimal point) followed by an integer. Specifying a
precision tells printf how many digits to display after the decimal point in
a floating point number. For example, in

$1 == "John" { printf "$%.2f on %s\n", $4 * 1.05, $2 }

the placeholder %.2f indicates that printf is to display all floating point
numbers with two digits after the decimal point.

The output of this program is
$105.00 on role-playing
$31.50 on jogging

For good-looking output, you might specify both a width and a precision.
For example, the program

$1 == "John" {printf "$%6.2f on %s\n", $4 * 1.05, $2}

displays the following:
$105.00 on role-playing
$ 31.50 on jogging

%6.2f indicates that the corresponding floating point value is to be
displayed with a width of six characters, with two characters after the
decimal point.

Here are a few more awk programs that work on the hobbies file. Predict
what each displays and run them to see if your prediction is right.

(i) { printf "%6s %s\n", $1, $2 }
(ii) { printf "%20s: %2d hours/week\n", $2, $3 }
(iii) $1=="Katie" { printf "%20s: $%6.2f\n",$2,$4 }

Escape
Sequences

All of the format strings so far have ended in \n. This kind of construct is
called an escape sequence. All escape sequences are made from a backslash
character (\) followed by one to three other characters.

Formatted Output

Using MKS AWK 19

Escape sequences are used inside all strings, not just those for printf, to
represent special characters. In particular, the \n escape sequence represents
the newline character. A \n in a printf format string tells awk to start
displaying output at the beginning of a new line. In a program like

$1 == "Lori" { printf " %s", $2 }

the output is

 jogging weight-lifting bridge
The output is all on one line; without the \n escape sequence, printf does
not start new lines.

You can use the \n escape sequence in the middle of a format string. For
example, the output of

$1 == "John" { printf "%s:\n %d\n",$2,$3 }

is
role-playing:
 8
jogging:
 8

The first newline escape sequence starts a new line after the colon; the
second starts a new line after the value of $3.

The following table lists escape sequences that may be used in awk strings:

Escape ASCII Character

\a audible bell

\b backspace

\f formfeed

\n newline

\r carriage return

\t horizontal tab

\v vertical tab

\ooo ASCII character, octal ooo

\xdd hexadecimal character dd

\” quote

\c any other character c

Simple Arithmetic

20 PTC MKS Toolkit

The escape sequence \" (a backslash followed by a quote) is used when you
want a string to contain an actual quote character, as in

"He said, \"Hello\"."

By entering \", you indicate that the quote character is inside the string; if
you left out the backslash, awk interprets the quote as the end of the string.

Because a backslash followed by another character looks like an escape
sequence, you must type two backslashes (\\) if you want to put a single
backslash character in a string.

For example,
{ print "The backslash (\\) character" }

displays
The backslash (\) character

Variables
Suppose you want to find out how many people have jogging as a hobby. To
do this, you have to look through the hobbies file, record-by-record, and
count the number of records that have jogging in their second field. This
means that you must remember the count from one record to the next.

awk programs remember information by using variables. A variable is a
storage place for information. Every variable has a name and a value. An
awk action of the form

name = value

assigns the specified value to the variable that has the given name. For
example,

count = 0

assigns the value 0 to the variable count.

Note Do not confuse = (assigns) with == (is equal to). = stores a value in a
variable; == tests to see if two values are equal.

You can use variables in expressions. For example, the value of the
expression

count + 1

is the current value of count, plus 1.

Variables

Using MKS AWK 21

Now consider the action
count = count + 1

awk first finds the value of
count + 1

and then assigns this value to count. Thus the preceding action increases the
value of count by 1. In a program, you can use this sort of action to count
how many people have jogging as a hobby.

BEGIN { count = 0 }
$2 == "jogging" { count = count + 1 }
END { printf "%d people like jogging.\n", count }

Let's look at this program line-by-line.
BEGIN { count = 0 }

BEGIN is a special type of pattern. When a rule has BEGIN as its pattern, awk
performs the associated action before looking at any of the records in the
data file. In this example, awk begins by assigning the value 0 to count.

$2 == "jogging" { count = count + 1 }

adds one to count every time awk finds a record with jogging in the second
field.

END { printf "%d people like jogging.\n", count }

is another rule with a special pattern. When a rule has END as its pattern, awk
performs the associated action after awk looks at all records in the data files
specified on the command line. Thus when awk has looked at all the records,
the printf action displays the count of people who jog. The output from the
program is

3 people like jogging.

Notice how the value of count was displayed in place of the %d placeholder.

Here are a few more programs that use variables. Examine the programs and
predict what they do.

(i) BEGIN { count = 0 }
$1 == "John" { count = count + 1 }
END { printf "John has %d hobbies.\n", count }

Simple Arithmetic

22 PTC MKS Toolkit

Here are the explanations of what the programs do.

With variables, you can write even more complex programs. For example,
consider the following

BEGIN { sum = 0; count = 0 }
$2 == "role-playing" {
 count = count + 1
 sum = sum + $4
}
END {

printf "Average per person: $%6.2f\n",sum/count
}

This program has two variables. count keeps track of the number of people
with role-playing as a hobby. sum keeps track of the amount of money spent
on role-playing. Dividing sum by count, gives the average amount spent on
role-playing.

Notice that the action part of the BEGIN rule contains two assignment
instructions. A semicolon is used to separate the two instructions. The
second rule in the program also has two assignments:

count = count + 1
sum = sum + $4

These two instructions were put on separate lines. When an action contains
more than one instruction, you can separate the instructions with semicolons
or by putting them on separate lines.

(ii) BEGIN { sum = 0 }
$1 == "Linda" { sum = sum + $4 }
END {
 printf "Linda spends $%6.2f a year\n",sum
}

(iii) BEGIN { hours = 0 }
$1 == "Lori" { hours = hours + $3 }
END {
 printf "Lori passes %d hours/week\n",hours
}

(i) This counts the number of hobbies that John has.

(ii) This adds up the amount of money that Linda spent on hobbies
in the past year.

(iii) This calculates how many hours a week that Lori spends on her
hobbies.

Variables

Using MKS AWK 23

You can use variables in the pattern part of a rule. For example,
BEGIN { max = 0 }
$3 > max { max = $3 }
END {

printf "The maximum time was %d hours.\n", max
}

finds the maximum value of field three in the hobbies file. The maximum
is set to 0 to start. Then, if a record has a greater value in field three, max is
set to this new value. At the end of the data file, max holds the largest value
found.

As an exercise, you should try to write an awk program that examines the
hobbies file and calculates the average number of hours per week that
someone spends on any one hobby. After that, write a program that
calculates the average number of hours per year that a person spends on any
one hobby.

The Increment
and Decrement
Operators

The last section showed how to advance the value held in a variable, with
count = count + 1

This is such a common operation that awk has a special operator for
incrementing variables by 1.

count++

adds 1 to the current value of count.

The -- operator is the counterpart of ++. It decrements (subtracts 1 from) the
current value of a variable. For example, to subtract 1 from count, you would
write:

count--

Initial Values If you use any variable X in an arithmetic expression before you assign the
variable a value, X is automatically given the value 0. This means that in the
program

BEGIN { count = 0 }
$2 == "jogging" { count = count + 1 }
END { printf "%d people jog\n", count }

you could omit the BEGIN rule. You do not have to assign 0 to count
explicitly; count automatically has the value 0 the first time you use it.

Built-In
Variables

awk has a number of built-in variables that you can use in your programs.
You do not have to assign values to these variables —awk automatically
assigns the values for you. The following list describes some of the
important numeric built-in variables.

Simple Arithmetic

24 PTC MKS Toolkit

NR contains the number of records read so far. When awk is looking at
the first record, NR is 1; when awk is looking at the second record,
NR is 2; and so on. In a BEGIN rule, NR has the value 0. In an END
rule, NR contains the total number of records read. A rule like

END { print NR }

displays the total number of data records read by the awk program.

FNR is like NR, but it counts the number of records that have been read
so far from the current file. When you give several data files on the
awk command line, awk sets FNR back to 1 when it begins reading
each new file.

Thus a command like
{ printf "%d:%s\n",FNR,$0 }

displays the line number in the current file, followed by a colon,
followed by the contents of the current line.

NF gives the number of fields in the current record. For the hobbies
file, NF is 4 for each line, because there are four fields in each
record. In an arbitrary text file, NF gives the number of words on the
current line in the file; by default, awk assumes that blanks separate
the fields of a record, so it considers each word on a line to be a
separate field; therefore, the program

{ count = count + NF }
END { print count }

displays the total number of words in the file.

You can use built-in variables in place of any other variable or value. For
example, they may appear in the pattern part of a rule.

NF > 10 { print }

displays any record that has more than ten fields.
NR == 5 { print }

displays record 5 in a file —the pattern selection criterion is true only when
NR is 5.

As another example, try to predict what
{ print $NF }

does. Since NF is the number of fields in the current record, it is also the
number of the last field in the record; therefore $NF refers to the contents of
the last field in a record and

{ print $NF }

displays the last field in every record in the data file.

Variables

Using MKS AWK 25

To test your understanding of almost everything discussed in this chapter, try
to predict what

(NR % 5) == 0

displays. The expression
NR % 5

calculates the remainder of NR divided by 5. The rule displays a record
whenever this remainder is equal to 0; therefore, the rule displays every fifth
record from the data file.

As an exercise, write awk programs to do the following.

Go ahead and write these programs now. Test them by running them on
arbitrary text files. Once you have a solution that works, compare them
against the following possible answers.

(i) NF != 3

(ii) { words = words + NF)
END {

printf "Words = %d, Lines = %d\n", words, NR
}

(iii) NF == 4 { count = count + 1 }
NF == 5 { count = count + 1 }
END { print count }

(iv) { words = words + NF }
END { printf "Average = %d\n", words/NR }

(i) Display every record which does not have exactly 3 fields.
(ii) Display the total number of words and total number of lines

in a text file. (This is two thirds of what the wc command
does.)

(iii) Display the total number of records that have either four
fields or five fields.

(iv) Display the average number of words per line in a text file.

Simple Arithmetic

26 PTC MKS Toolkit

Arithmetic Functions
In awk, a function can be compared to a car assembly line: you feed in
various parts and raw materials at one end, and you get out a complete
product at the other end. Of course, in awk a function is fed data values
(called the arguments of the function) and the final product is also a data
value (called the result of the function).

You may already be familiar with this kind of function in mathematics. For
example, sin() is a mathematical function. If you feed an angle into the
sin() function, you get out a number which is the trigonometric sine of the
given angle. The angle is the argument of the function and the sine is the
result.

In awk, you use functions inside expressions. For example, you might have
the assignment

y = sin(x)

The right hand side of the assignment is a function call. The name of the
function is sin; this name is immediately followed by parentheses which
enclose the arguments of the function. When an awk program contains a
function call, awk calculates the result of the function, then use that result in
the expression that contains the function call. In the preceding assignment,
awk calculates the number that is the sine of the given angle, and then
assigns that number to the variable y.

As another example, sqrt() is an awk function the result of which is the
square root of its argument.

The assignment
x = sqrt(16)

assigns the value 4 to x.

To show how you can use these functions, consider a set of data that contains
one number per line. Here's a program which reads this number and displays
the square root.

{ printf "Number: %f, Root: %f\n", $1, sqrt($1) }

You might run this program with the command line
awk '{printf "Number: %f, Root: %f\n", $1, sqrt($1)}'

and then type in numbers from the terminal. Each time you press ENTER at
the end of the line, awk displays the square root of the number.

Any argument of a function may be an expression instead of a single value.
For example,

y = sin(2*x)

Arithmetic Functions

Using MKS AWK 27

awk calculates the value of the expression, then uses that value as the
argument of the function.

awk recognizes the most common mathematical functions, as shown in the
accompanying table.

Several of these functions may require more explanation.

The int() function takes a floating point number as an argument and
returns an integer. The integer is just the floating point number, without its
fractional part. For example,

int(6.3)

has the value 6, while
int(-7.4)

has the value -7. Notice that the fractional part is just removed, not rounded.
int(8.99999)

has the value 8.

Every call to rand() returns a new random number between 0 and 1. In this
way, you can get a sequence of random numbers. You can use srand() to
set the starting point or seed for a random number sequence. If you set the
seed to a particular value, you always get the same sequence of numbers
from rand(). This is useful if you want a program to use rand() but obtain
uniform results every time the program runs.

Function Result

sqrt(x) square root of x

sin(x) sine of x, where x is in radians

cos(x) cosine of x, where x is in radians

atan2(y,x) arctangent of y/x in range - to 

log(x) natural logarithm of x

exp(x) the constant e to the power x

int(x) integer part of x

rand() random number between 0 and 1

srand(x) sets x as seed for rand()

Simple Arithmetic

28 PTC MKS Toolkit

As an example of how rand() can be used, here's a sequence of instructions
that you could use in an awk program to simulate a roll of two six-sided dice.

die1 = int(6 * rand() + 1)
die2 = int(6 * rand() + 1)

The function call
rand()

obtains a random floating point number between 0 and 1 (not including 1).
Notice that the function call needs the parentheses, even though rand()
doesn't need any argument values. Multiplying the random number by 6
gives a floating point value between 0 and 6 (not including 6). Adding 1
gives a floating point value between 1 and 7 (not including 7). applying the
int() function to this floating point value drops the fraction part, giving us
an integer between 1 and 6.

Using MKS AWK 29

4Patterns and Regular
Expressions

So far, this document has discussed three kinds of patterns: comparisons,
and the special patterns BEGIN and END. This chapter discusses a fourth
kind: regular expressions.

A regular expression is a way of telling awk to select records that contain
certain strings of characters. For example,

/ri/ { print }

tells awk to display all records that contain the string ri. If you apply this rule
to the hobbies file, you get

Jim bridge 4 10.00
Linda bridge 12 30.00
Lori jogging 5 30.00
Lori weight-lifting 12 200.00
Lori bridge 2 0.00

All these records contain ri, either in Lori or bridge.

Regular expressions are always enclosed in slashes as shown in the rule just
discussed. For example, you might write

/ing/

to display all the records that contain ing.

awk pays attention to the case of letters in regular expressions. For example,
/li/

displays the record that contains weight-lifting; however, the /li/ does
not match the Linda records because the L in Linda is uppercase.

It is important to recognize the difference between two rules like
$1 == "Lori"
/Lori/

To satisfy the pattern
$1 == "Lori"

Patterns and Regular Expressions

30 PTC MKS Toolkit

a record must have its first field exactly equal to the string Lori. If the first
field is Lorie, for example, the comparison is not true and the pattern is not
satisfied. With the regular expression

/Lori/

the string Lori can appear anywhere in the record, and can be all or part of a
field. This regular expression would match a string like Lorie.

The Matching Operators
If the pattern in a rule is just a regular expression, awk looks for a matching
string anywhere in a record. Sometimes however, you only want to look for a
matching string in a particular field of a record. In this case, you can use a
matching expression.

There are two types of matching expressions:
string ~ /regular-expression/

is true if the string matches the given regular expression. (The ~ character is
called tilde.)

string !~ /regular-expression/

is true if the string does not match the given regular expression. For
example,

$2 ~ /ri/

displays all records that have ri somewhere in the second field. The output is:
Jim bridge 4 10.00
Linda bridge 12 30.00
Lori bridge 2 0.00

The rule
$1 !~ /J/

displays all records without a J somewhere in the first field. These two
patterns are equivalent:

/Lori/
$0 ~ /Lori/

Metacharacters

Using MKS AWK 31

Metacharacters
The following characters have special meanings when you use them in
regular expressions.

^ stands for the beginning of a field. For example,
$2 ~ /^b/ { print }

displays any record with a second field that begins with b.

$ stands for the end of a field. For example,
$2 ~ /g$/ { print }

displays any record with a second field that ends with g.

. matches any single character (except the newline). For
example,

$2 ~ /i.g/ { print }

selects records with fields containing ing, and also
records containing bridge (idg).

| means or. For example,
/Linda|Lori/

is a regular expression that matches either of the strings
Linda or Lori.

* indicates zero or more repetitions of a character. For
example,

/ab*c/

matches abc, abbc, abbbc, and so on. It also matches ac
(zero repetitions of b). The * is most frequently used in the
expression .*. Since . matches any character except the
newline, .* matches an arbitrary string of zero or more
characters. For example,

$2 ~ /^r.*g$/ { print }

displays any record with a second field that begins with r,
ends in g, and has any set of characters between (for
example, reading and role-playing).

+ is similar to *, but stands for one or more repetitions of a
string. For example,

/ab+c/

matches abc, abbc, and so on, but does not match ac.

Patterns and Regular Expressions

32 PTC MKS Toolkit

\{m,n\} indicates m to n repetitions of a character (where m and n
are both integers). For example,

/ab\{2,4\}c/

would match abbc, abbbc, and abbbbc, and nothing else.

? similar to *, but stands for zero or one repetitions of a
string. For example,

/ab?c/

matches ac and abc, but not abbc, etc.

[X] matches any one of the set of characters X given inside the
square brackets. For example,

$1 ~ /^[LJ]/ { print }

displays any record with a first field that begins with either
L or J. awk also offers some special cases for common sets
of characters.

[:lower:] stands for any lowercase letter

[:upper:]stands for any uppercase letter

[:alpha:]stands for any letter

[:digit:]stands for any digit

[:alnum:]stands for any alphanumeric character (letter
or digit)

[:space:]stands for any white space character (such as a
space or a tab character)

[:print:]stands for any printable character, including
the space character

[:graph:]stands for any printable character except the
space character

[:punct:]stands for any printable character that isn't
white space or alphanumeric

[:cntrl:]stands for any non-printable character

Thus
/[[:digit:][:alpha:]]/

matches a digit or letter. If you use these special cases, you
don't have to remember, for instance, that
/[,\./?\[\]{}=+_-~`!@#\$%:;"'\^&*()|\\]/

matches any printable character that isn't white space,

Metacharacters

Using MKS AWK 33

numbers, or letters—you can use /[[:punct:]]/
instead.

[^X] matches any one character that is not in the set X that
follows the caret ^. For example,

$1 ~ /^[^LJ]/ { print }

displays any record with a first field that does not begin
with L or J.

$1 ~ /^[^[:digit:]]/ { print }

displays any record with a first field that does not begin
with a digit.

(X) matches anything that the regular expression X does. You
can use parentheses to control the way in which other
special characters behave. For example, * normally
applies to the single character that immediately precedes
it. This means that

/abc*d/

matches abd, abcd, abccd, and so on; however,
/a(bc)*d/

matches ad, abcd, abcbcd, abcbcbcd, and so on.

The characters with special meanings are
^ $. * + ? [] () |

These are known as metacharacters. When a metacharacter appears in a
regular expression, it usually has its special meaning. If you want to use one
of these characters literally (without its special meaning), put a backslash in
front of the character. For example,

/\$1/ { print }

displays all records that contain a dollar sign $ followed by a 1. If you just
wrote

/$1/ { print }

awk would search for records where the end of the record was followed by a
1 - which is impossible.

Because the backslash has this special meaning, \ is also considered a
metacharacter. If you want to create a regular expression that matches a
backslash, you must therefore use two backslashes (\\).

Patterns and Regular Expressions

34 PTC MKS Toolkit

Matching Expressions with Strings
Previous sections have shown matching operations that contain regular
expressions inside slash (/) characters. Matching operations can also refer to
normal strings, as in:

$1 ~ "xyz"

This has the same effect as
$1 ~ /xyz/

awk compiles regular expressions when it reads the program. To use a string
as a regular expression, awk constructs a dynamic regular expression out of
the string. This is slower, since the string is compiled into a dynamic regular
expression every time it is used; however, it is much more powerful.

When a matching operation uses a string instead of a regular expression, and
the string contains one or more metacharacters, the situation is a little bit
tricky. If you want to escape a metacharacter (have it taken literally), you
must use two backslashes instead of one. For example, suppose you want to
look for strings of the form "$1.00" in field 4 of a record. Using regular
expressions, you would write

$4 ~ /\$1\.00/

to show that both the $ and the . should be taken literally. With strings, you
would have to write:

$4 ~ "\\$1\\.00"

You need two backslashes instead of one. The reason is simple: as discussed
in Chapter 3: “Simple Arithmetic”, you need to type two backslashes inside
a quoted string to get the effect of one. For example,

{ print "The backslash character: \\" }

displays

The backslash character: \
To match a backslash in a dynamic regular expression, you must use four, as
in

$1 ~ "\\\\"

awk reads the literal string "\\\\" and turns it into a string consisting of
"\\". When used as a dynamic regular expression, this matches one
backslash.

Pattern Ranges

Using MKS AWK 35

Pattern Ranges
A rule of the form

pattern1 , pattern2 { action }

performs the given action on every line, starting at an occurrence of pattern1
and ending at the next occurrence of pattern2 (inclusive). For example, the
rule

NR == 1, NR == 10 { print $1 }

displays the first field of each of the first 10 input lines. It starts when NR is
1 and ends when NR is 10.

/Jim/, /Linda/ { print $2 }

displays the second field of all lines between an occurrence of Jim and an
occurrence of Linda.

Using the hobbies file as our data file, the output is
reading
bridge
role-playing
bridge

When awk finds a record matching pattern2, it begins to look for a line
matching pattern1 again. Thus, with a rule like

/reading/, /role/

the output is
Jim reading 15 100.00
Jim bridge 4 10.00
Jim role-playing 5 70.00
Katie reading 10 60.00
John role-playing 8 100.00

awk displays the first range of records from reading to role, then starts
looking for reading again.

It's important to bear in mind that awk starts performing the rule's action as
soon as there is a record that matches pattern1. awk does not check to make
sure that there is a line matching pattern2 in the rest of the file. This means
that

/Lori/, /Jim/ { print $2 }

begins displaying at the first record that contains Lori, and keeps going
until it reaches the end of the file —no Jim is found.

Patterns and Regular Expressions

36 PTC MKS Toolkit

Multiple Conditions
The && (double ampersand) operator means AND. For example,

$3 > 10 && $4 > 100.00 { print $1, $2 }

displays the first and second fields of any record where $3 is greater than 10
and $4 is greater than 100.00. Similarly, the rule

$1 ~ /J/ && $4 < 50.00

displays all records in which $1 contains a J and $4 is less than 50.00.

The || (double or-bar) operator means OR. For example,
$1 == "Linda" || $1 == "Lori"

displays any record with a first field that is either Linda or Lori.
/jogging/ || /reading/ { sum = sum + $4 }
END { print sum }

calculates the total spent by the hobbyists on both jogging and reading (since
sum is increased if the hobby is either jogging or reading). The
preceding program is equivalent to

/jogging|reading/ { sum = sum + $4 }
END { print sum }

which demonstrates that there are often several ways of writing the same
program.

You can only use the && and || operators to combine complete pattern
expressions. For example, you cannot write

$1 == "Linda" || "Lori"

You must write
$1 == "Linda" || $1 == "Lori"

For practice with the concepts discussed in this chapter, write programs that
do the following.

(i) Display every record that begins with A and contains more than
four fields.

(ii) Display the number of records that contain a dollar sign ($).

(iii) Display records 10 through 20 of every data file read in.

(iv) Display every 10th record of a file, plus the record that
immediately follows the 10th record (that is, records 10 and 11,
records 20 and 21, and so on).

Multiple Conditions

Using MKS AWK 37

When you have written your programs, compare them against the solutions
that follow. Remember that there may be several ways to write the same
program.

(i) /^A/ && NF > 4

(ii) /\$/ { count = count + 1}
END { print count }

(iii) FNR == 10, FNR == 20

(iv) (NR % 10) == 0, (NR % 10) == 1
or
((NR % 10) == 0) || ((NR % 10) ==1)

Patterns and Regular Expressions

38 PTC MKS Toolkit

Using MKS AWK 39

5Actions and Control
Structures

Previous chapters have discussed three actions: print, printf, and
assignments. This chapter examines a wide variety of constructs that may
appear in the action part of an awk rule. Note that most of these are virtually
identical to constructs in the C programming language.

Comments
A comment is a note inside your program, explaining what the program is
doing. awk skips over comments, ignoring them; in this way, comments do
not affect how your program behaves, but they should help explain what's
going on.

A comment begins with a # character. When awk sees the # in a program
(outside of a quoted string or regular expression), awk ignores the rest of the
line. For example, you might write

This program totals the hours John spends on hobbies
/John/ { sum = sum + $3 } # field 3 is hours
END { print sum }

The first line of the program explains what the program is doing. This is
useful when you have a number of awk programs stored in different files and
you cannot remember which program is which. A simple comment at the
beginning of the program lets you identify the program without having to
read through the code and figure out what is going on. The line

/John/ { sum = sum + $3 } # field 3 is hours

shows another way in which you can use comments. A comment on the end
of a line can give further information about what that line is doing. In this
case, it explains the meaning of the number in field three of the record.

Actions and Control Structures

40 PTC MKS Toolkit

Use comments in any significant program. Without meaningful comments,
you may find it very difficult to understand a program if you look at it
several months after you wrote it. Comments also make it easier for others to
understand the programs you write.

The if Statement
An if statement is an action of the form

if (expression) statement1 else statement2

Typically, the expression in the if statement has a true/false value. If the
value is true, statement1 is performed; otherwise, statement2 is performed.
The else statement2 part is optional.

Note When the else statement2 part of the if statement is on the same line as
the statement1, you must separate the else statement2 from statment1 with a
semicolon (;).

As an example of how to use if, you are going to write some programs that
examine a file of baseball scores (since you are probably tired of the hobbies
example by now). The baseball file is installed as ROOTDIR/samples/
guide/baseball, and it looks like this:

Blue Jays 8 Yankees 6
Brewers 3 Red Sox 7
Tigers 10 Orioles 3
 ...and so on...

Each line gives the home team first and the visitors second. Fields in each
record are separated by tab characters (shown here as wide spaces) instead of
single blanks, because some team names contain blanks. This means that
you must specify the option

-F"\t"

in all awk programs that you run on the baseball file. This option is
equivalent to having the line:

BEGIN { FS = "\t" }

in your awk program.

The if Statement

Using MKS AWK 41

All the scores in the baseball
file were generated randomly
with an awk program shown in
Chapter 8: “User-Defined
Functions”.

The program
{

if ($2 > $4) print "Home"
else print "Visitor"

}

displays Home when the home team's score ($2) is greater than the visiting
team's, and displays Visitor otherwise. (For those who are not baseball
fans, it should be pointed out that baseball games do not end in ties —they
keep playing until one team wins.

You may omit the else part of an if statement. In this case, awk does nothing
if the expression of the if statement is not true. For example,

$1 ~ /Tigers/ { if ($2 > $4) win++ }
END { print win }

is a simple program that looks at all the Tigers' home games and displays the
number of times the Tigers won. On records where $2 is not greater than $4,
awk takes no action.

As a more complicated example, consider this:
$1 ~ /Yankees/ { if ($2 > $4) print "Home Win"

else print "Home Loss" }
$3 ~ /Yankees/ { if ($4 > $2) print "Away Win"

else print "Away Loss" }

This program runs through the baseball scores looking for games involving
the Yankees, displaying appropriate messages for each possible outcome.

$1 ~ /Yankees/ {
 if ($2 > $4) hw++
 else hl++
 }
$3 ~ /Yankees/ {
 if ($4 > $2) aw++
 else al++
 }
END {
 printf "Home Wins: %d\n", hw
 printf "Home Losses: %d\n", hl
 printf "Away Wins: %d\n", aw
 printf "Away Losses: %d\n", al
 }

is similar to the previous program; however, this example keeps track of the
number of wins and losses, at home and away, then displays these values at
the end.

Actions and Control Structures

42 PTC MKS Toolkit

A Word on Style
Take note of the way in which indentation was used in the preceding
program.

 Except in trivial cases, a new line starts after every opening brace ({).

 Every else is lined up under the corresponding if.

 Parallel statements, like the sequence of printf instructions are lined
up underneath each other.

It is not necessary to write awk programs in this way, but appropriate
indentation and spacing make programs much easier to read and understand.
Your style for writing programs can also help you spot errors as you type in
your program. For example, if you always try to make opening and closing
braces line up, it is easy to notice when you have left out one of the braces.

The indentation format used in this document is just one example of a clean
readable programming style. All programmers develop personal preferences
as they become familiar with a language, and you may decide to deviate
from this guide's style in some respects. The most important thing is to have
a style and to follow it consistently in all your future programs. It may not
make much difference now, when your programs are relatively simple; but
as your programs become more complex, you will find that style is an
important aid to writing programs that work correctly.

Compound Statements
In an if statement, you sometimes want to perform several instructions in
the if or the else part. You can do this by enclosing the instructions in
brace brackets. Such a construct is called a compound statement.

Compound Statements

Using MKS AWK 43

For example, consider the following program.
{
 if ($2 > $4) {
 homewin++
 printf "The %s defeated the %s.\n", $1, $3
 } else {
 homeloss++
 printf "The %s defeated the %s.\n", $3, $1
 }
}
END {
 printf "The home team won %d times.\n", homewin
 printf "The home team lost %d times.\n", homeloss
}

awk applies the first action to every record in the file. It keeps a count of how
many times the home team wins and how many times the home team loses.
It also displays a line telling who defeated whom. The END action
summarizes the results after they have been calculated.

As another example, the following program examines the games involving
the Orioles.

$1 ~ /Orioles/ {
 if ($2 > $4) {
 win++ # Home win
 printf "%s: %d, %s: %d\n",$1,$2,$3,$4
 } else {
 loss++ # Home loss
 printf "%s: %d, %s: %d\n",$3,$4,$1,$2
 }
}
$3 ~ /Orioles/ {
 if ($4 > $2) {
 win++ # Away win
 printf "%s: %d, %s: %d\n",$3,$4,$1,$2
 } else {
 loss++ # Away loss
 printf "%s: %d, %s: %d\n",$1,$2,$3,$4
 }
}
END {
 printf "Wins: %d, Losses: %d\n", win, loss

}

Each line of output from the first two actions has the form
Winning team: score, Losing team: score

Actions and Control Structures

44 PTC MKS Toolkit

The final line of output (from the END rule) summarizes the Orioles' wins
and losses.

Examine this program closely to see how it works. The program is quite
straightforward, but make sure you understand how it covers all the possible
cases.

One if statement can contain another. For example, the previous program
can be written

/Orioles/ {
 if ($2 > $4) { # Home team wins
 printf "%s: %d, %s: %d\n",$1,$2,$3,$4
 if ($1 ~ /Orioles/)
 win++
 else
 loss++
 } else { # Home team loses
 printf "%s: %d, %s: %d\n",$3,$4,$1,$2
 if ($3 ~ /Orioles/)
 win++
 else
 loss++
 }
}
END {
 printf "Wins: %d, Losses: %d\n", win, loss
}

This version of the program determines whether the game was won by the
home team or not, displays the scores with the winner first, and then checks
to see if the Orioles were the home team or the visitors. The previous version
of the program split the problem into two parts: one action performed when
the Orioles were the home team and one when they were not.

while Loops
A while loop repeats one or more other instructions as long as a given
condition holds true. The format of the loop is

while (expression) statement

while Loops

Using MKS AWK 45

where the statement can be a single statement or a compound statement. For
example, the file numbers contains a set of one to ten random numbers on
each line. The following program adds up the numbers on each line and
displays the line's total.

{
 sum = 0
 i = 1
 while (i <= NF) {
 sum = sum + $i
 i = i + 1
 }
 print sum
}

The variable i counts fields in the record. While i is less than or equal to the
total number of fields in the record, the while loop adds the value of the ith
field to sum and then adds 1 to i. The loop then starts again; if the new value
of i is still less than or equal to the total number of fields, the loop adds in
the value of the next field. The loop stops looping when i is greater than NF.

As another example, here's a program that uses the same data file and
displays the maximum value on each line.

{
 max = $1 # starting max is field 1
 i = 2
 while (i <= NF) {
 if ($i > max) max = $i
 i = i + 1
 }
 print max
}

On each line, the variable max starts out with the value of the first field (that
is, the first number). The while loop then moves across the record number
by number, using an if statement to test whether a field is greater than the
current value of max. If a greater value is found, max is assigned the new
maximum value. After the loop, the maximum value is displayed.

What does the preceding program do if there is only one number on a
particular line? In this case, NF is 1. awk performs the statements

max = $1
i = 2
while (i <= NF) ...

Actions and Control Structures

46 PTC MKS Toolkit

and finds that i is already greater than NF; therefore, awk does not perform
any of the instructions in the while loop at all. If the condition part of a
while loop is false when the loop is first encountered, the statements in the
loop are not run at all.

As an exercise, try to write a program that reads a normal text file and writes
out the text, one word per line.

for Loops
The statement

for (expression1;expression2;expression3) statement

is equivalent to the following instruction sequence.
expression1
while (expression2) {
 statement
 expression3
}

For example,
{
 for (i = NF; i > 0; i--)
 printf "%s ", $i
 printf "\n"
}

goes through a file line-by-line, displaying the words on each line in reverse
order. The program that displayed the maximum value in an input line can be
written:

{
 max = $1
 for (i = 2; i <= NF; i++)
 if ($i > max) max = $i
 print max
}

There is another form of the for
loop described in Chapter 7:
“Arrays”.

Therefore, the for loop is just a short-hand way of writing a certain kind of
while loop.

The next Statement

Using MKS AWK 47

The next Statement
The instruction

next

skips immediately to the next record in the data file. Try this example on the
baseball score file:

{
 if (NF < 5) {
 printf "Not enough fields: %s\n", $0
 next
 }
 if ($2 > $4) print "Home Win"
 else print "Home loss"
}

If a particular record has less than five fields, this program displays a
warning message and skips to processing the next record. This bypasses the
rest of the instructions in the rule. It also bypasses any other rules that might
normally be applied to this record. As this example shows, next is often used
when a program finds a record that does not have the format you expect.

You can also use next to skip to the next record if you do not want the record
processed by any of the remaining rules. For example, you might write:

$1 ~ /Orioles/ {count++; next}
$3 ~ /Orioles/ {count++}

This prevents the record from being counted twice if it has Orioles in both
the first and third fields. Another way to write this program is:

($1 ~ /Orioles/) || ($3 ~ /Orioles/) { count++ }

If you use the next instruction inside a BEGIN rule, it tells awk to start normal
processing (by reading the first record of the first file). In other words, it
indicates that you are finished BEGIN processing.

The exit Statement
The statement

exit

makes an awk program behave as if it has just reached the end of data input.
No further input is read. If there is an END action, awk runs it before the
program terminates. As with next, exit is often used when input data is
found to be in error.

Actions and Control Structures

48 PTC MKS Toolkit

If exit appears inside the END action, it terminates the program
immediately.

Using MKS AWK 49

6String Manipulation

Preceding chapters have used quoted strings extensively. This chapter
discusses strings in more detail, and the various operations that manipulate
strings.

String Variables
Chapter 3: “Simple Arithmetic” showed how to use numeric variables:
variables that contained numbers. Variables can also contain strings. For
example,

a = "string"

assigns a string to a variable a. As an example of how you can use this, here
is a simple program that checks a text file for duplicate lines (that is, places
where two adjacent lines are identical).

{
 if ($0 == lastline) printf "%d: %s\n", FNR, $0
 lastline = $0
}

The variable lastline represents the contents of the previous line in the
file. In the action of the program, awk compares the current record $0 to the
previous record (stored in lastline). If the two are equal, the printf
action displays the line number FNR and the contents of the line. At the end
of the action, lastline is assigned the contents of the current line (so that
this can be compared to the next line).

You might wonder what lastline contains when the program first begins.
After all, nothing is assigned to lastline until the first line has been read. All
string variables begin with a null string value. A null string is a string that
contains no characters. It is written "". When used in an arithmetic
expression, a null string has the value 0.

String Manipulation

50 PTC MKS Toolkit

As another example of using string variables, here's a program that displays
the last line of a file.

 { line = $0 }
END { print line }

The value of each input line is assigned to the variable line. At the end of the
file, line contains the contents of the last line in the file; therefore, the END
action displays the contents of that line.

Built-In String Variables
The “Simple Arithmetic” chapter also discussed the built-in numeric
variables NF, NR, and FNR. In addition, awk provides a number of built-in
string variables.

FILENAME contains the name of the current input file. For example,
when applying programs to the hobbies file, the value of
FILENAME is hobbies. If the input is coming from the
awk standard input, the value is -.

FS is the field separator string, giving the character that is
used to separate fields in the current file. The default value
for FS is " " (a single blank), which as a special case
matches both blank and tab; however, if the command line
contains a -F option specifying a different field separator,
FS is a string containing the given separator character. As
well, a program may also assign values to FS to indicate
new field separator characters. For example, you can
create a data file with a first line that gives the character
used to separate fields in the records in the rest of the file.
An awk program can then use the rule

FNR == 1 { FS = $0 }\

Please see the Input section of
the awk reference page in the
PTC MKS Toolkit Utilities
Reference for details.

This says that the field separator string FS is to be assigned
the contents of the first record in the current data file. The
character in this line is then taken to be the field separator
for the rest of the file (unless FS changes value again).
Any FS value of more than one character is used as a
regular expression.

RS is the input record separator. Just as FS indicates the
character that separates fields within records, RS indicates
the character that separates one record from another. By
default, RS contains a newline character, which means that

Built-In String Variables

Using MKS AWK 51

input records are separated by newline characters;
however, a different character may be assigned to RS; for
example, with

RS = ";"

input records are separated by semicolon characters. This
lets you have several records on one line, or a single
record that extends over several lines—records are
separated by semicolons, not newlines. As an important
special case,

RS = ""

separates records by empty lines.

OFS gives the output field separator string. When you use the
print action to display several values, as in

{ print A, B, C }

awk displays the output field separator string between
each of the values. By default, OFS contains a single blank
character, which is why output values are separated by a
single blank; however, if you make the assignment

OFS = " : "

the output values are separated by the given string. You
can also use the OFS to reconstruct the $0 field during
field assignment.

ORS gives the output record separator. When you use the
print action to display records, awk displays the output
record separator at the end of each record. By default, ORS
is the newline character, which is why print displays a new
output line each time it is called; however, a different
separator string may be used by assigning the string to
ORS.

OFMT is the default output format for numbers when they are
displayed by print. This is a format string like the one used
by printf. By default, it is %.6g, indicating that numbers
are to be displayed with a maximum of six digits after the
decimal point. By changing OFMT, you can obtain more or
less displayed precision.

CONVFMT is the default format which awk uses when converting
numbers to strings internally. This differs from the OFMT
variable which is only used when displaying numbers. The
internal conversion of a number to a string occurs when

String Manipulation

52 PTC MKS Toolkit

you perform catenation, indexing, and some comparison
operations. awk converts floating point numbers (that is,
ones that are not integers) to strings as if you had specified
the operation

sprintf(CONVFMT, number ...)

By default, the value of CONVFMT is %.6g. The next
session discusses conversions in more detail.

CONVFMT is a POSIX extension not found in traditional
implementations of awk.

String vs. Numeric Variables
Earlier sections stated that string variables start out with the null string value,
while numeric variables start out as 0. There's an obvious question: how can
awk differentiate between string and numeric variables, especially when it
has started running the program and you have not even used the variable yet?
The answer is that a variable is assumed to contain a string unless you use it
as a number. For example, if you have a program that consists of

{ print X }

with no value assigned to X, awk assumes the variable is a string. Thus the
output is a blank line for each line of input; if X had been taken as a number,
the output would be 0 for each line of input.

In an action like
X = $1

the variable X is taken as a number if the form of $1 looks like a number and
string otherwise. For example, if the record is

3 ...

the first field looks like a number, so X is normally taken to be a numeric
variable. If the record is

7ABC ...

the first field cannot be a number (even though it starts with a digit), so X is
taken to be a string variable.

There are times when you want a value to be treated as a string, even though
it looks like a number. For example, suppose a file contains the string 1e1.
In some contexts, this could be a number (with an exponential part); in other

String Concatenation

Using MKS AWK 53

contexts, you might want to interpret this as a string. To make sure that a
value is taken as a string, even when it might look numeric, concatenate it
with an empty string, by placing a "" after it, as in

X = $2 ""

This makes sure that awk interprets the value in $2 as a string, even if it
looks like a number; therefore, X is a string variable. Similarly, if you want to
make sure that a value is taken to be a number, just add zero to it, as in

X = $3 + 0

In this case, $3 is definitely taken to be a number because it is involved in an
arithmetic operation. (What happens if $3 is not a valid number? If $3 starts
with something that looks like a number, as in 7ABC, the numeric value of
the string is the number. Thus the numeric value of 7ABC is 7. If the field
does not start with anything that looks like a number, the numeric value of
the string is zero. Thus the numeric value of ABC is 0.)

String Concatenation
The expression

$2 ""

seen in a previous chapter is an example of string concatenation. When a
line in a program contains two or more strings that are only separated by
blank characters, the strings are concatenated (joined) into one long string.
For example, the action

{ print $1 $2 $3 }

displays the contents of the first three fields, joined together into one string.
For example, if an input line contains

A B C

the output is
ABC

Similarly, applying the program
$1 ~ /John/ { print "$" $4 }

to the hobbies file, gives this output:
$100.00
$30.00

The $ character is concatenated to the contents of the fourth field in all the
appropriate records.

String Manipulation

54 PTC MKS Toolkit

String Manipulation Functions
“Simple Arithmetic” on page 13 introduced numeric functions like sin()
and sqrt(). awk also has a number of functions that perform string
operations.

length returns an integer which is the length of the current record
(that is, the number of characters in the record, without the
newline on the end). For example, the following program
calculates the total number of characters in a file (except
for newline characters):

 { sum = sum + length }
END { print sum }

length(s) returns an integer which is the length of the string s. For
example, the following program displays the length of the
first field in each record of the data file:

{ print length($1) }

length($0) is equivalent to just length.

gsub(regexp,replacement)
puts the replacement string replacement in place of every
string matching the regular expression regexp in the
current record. For example, the program

{
 gsub(/John/,"Jonathan")
 print
}

checks every record in the data file for the regular
expression John. Every matching string is replaced with
Jonathan and displayed. As a result, the output of the
program is exactly like the input, except that every
occurrence of John is changed to Jonathan. This form of
the gsub() function returns an integer which tells how
many substitutions were made in the current record. This
is 0 if the record has no strings that match regexp.

sub(regexp,replacement)
is similar to gsub() except that it only replaces the first
occurrence of a string matching regexp in the current
record.

gsub(regexp,replacement,string_var)
puts the replacement string replacement in place of every
string matching the regular expression regexp in the string

String Manipulation Functions

Using MKS AWK 55

string_var. For example, the program
{

 gsub(/John/,"Jonathan",$1)
 print

}

is similar to the previous program, but the replacement is
only made in the first field of each record. This form of the
gsub() function returns an integer which tells how many
substitutions were made in string_var.

sub(regexp,replacement,string_var)
is similar to the previous version of gsub() except that it
only replaces the first occurrence of a string matching
regexp in the string string_var.

As described in the section “Matching Expressions with
Strings” on page 34, you must use four backslashes to
embed one literal backslash in a gsub() or sub()
substitution string. For example,

gsub(/backslash/,"\\\\")

replaces all occurrences of the word backslash with the
single character \.

index(string,substring)
searches the given string for the appearance of the given
substring. If the substring cannot be found, index()
returns 0; otherwise, index() returns the number (origin
1) of the character in string where substring begins. For
example,

index("abcd","cd")

returns the integer 3 because cd is found beginning at the
third character of abcd.

match(string,regexp)
determines if string contains a substring that matches the
regular expression (pattern) regexp. If so, match()
returns an index giving the position of the matching
substring within string; if not, match() returns 0.
match() also sets the variable RSTART to the index where
the matching string starts, and the variable RLENGTH to the
length of the matching string.

substr(string,pos)
returns the last part of string beginning at a particular
character position. The argument pos is an integer, giving

String Manipulation

56 PTC MKS Toolkit

the number of a character. Numbering begins at 1. For
example, the value of

substr("abcd",3)

is the string cd.

substr(string,pos,length)
returns the part of string that begins at the character
position given by pos and has the length given by length.
For example, the value of

substr("abcdefg",3,2)

is cd (a string of length 2 beginning at position 3).

sprintf(format,value1,value2,...)
is based on the printf action. The value of sprintf()
is the string displayed by the action

printf(format,value1,value2,...)

For example,
str = sprintf("%d %d!!!\n",2,3)

assigns the string 2 3!!!\n to the string variable str.

tolower(string) returns the value of string, but with all the letters put into
lowercase. (This function is an extension to standard awk.)

toupper(string) returns the value of string, but with all the letters put into
uppercase. (This function is an extension to standard awk.)

ord(string) converts the first character of string into a number. This
number gives the decimal value of the character in the
ASCII character set. (This function is an extension to
standard awk.)

Using MKS AWK 57

7Arrays

In most programming languages, an array is a list of values, something like
a table of information. Arrays in awk are more general, but a good start is to
discuss the traditional concept of an array.

Arrays with Integer Subscripts
The simplest sort of array is a list of values (either numbers or strings). The
values in the list are called the elements of the array.

Elements in an array are most commonly referred to by number. For
example, the first element in the array could be number 1, the second could
be number 2, and so on. These numbers are called subscripts of the array
elements.

An awk array has a name, similar to a variable name. To refer to an element
of an array, you give the name of the array, followed by square brackets
containing the element's subscript. For example,

arr[3]

refers to element 3 in an array named arr. A statement like
for (i=1; i<=NF; i++)
 arr[i] = $i

creates an array arr with elements that contain all the fields of the current
record. A program like

{ lines[NR] = $0 }

stores the entire contents of the input file in an array called lines .
(Remember that the variable NR goes up by 1 for each line that is read in, so
the elements in the lines array are the lines of the input file, in order.) The
program

 { lines[NR] = $0 }
END { for (i=NR; i>0; i--) print lines[i] }

Arrays

58 PTC MKS Toolkit

reads in the contents of a data file and stores the input in lines. When all the
lines have been read in, the END action displays the lines in reverse order.
The program therefore reads in lines of text, then displays those lines in
reverse order.

Note You would not want to use this program with a large file—awk stores
arrays in your computer's memory, so there is a limit on how big an array can be.

As another example of the simple use of arrays, suppose you have a file that
contains 12 columns of numbers and you want to add up the numbers in each
column. You could do this with the program

 { for (i=1; i<=12; i++) sum[i] = sum[i] + $i }
END { for (i=1; i<=12; i++) print sum[i] }

Each element in the array called sum is used to hold a running total of the
sum of numbers in a particular column.

Notice that our examples have made extensive use of the for statement.
This is true of many programs that use arrays.

Also notice that you do not need any special statement to create or declare
an array. If a statement in a program contains a name followed by a value in
square brackets, awk assumes that the name refers to an array. You cannot
use a name as both a variable and an array in the same awk program.

Generalized Arrays
Most programming languages let you create arrays that use numbers as
subscripts; but awk also lets you create arrays that have string values as
subscripts. As an example, let's go back to the hobbies file and write a
program that calculates how much each person spends on all his or her
hobbies.

{ money[$1] += $4 }

uses an array named money. The subscripts of this array are the names of the
people in the hobbies file. There is

money["Jim"]
money["Linda"]
money["John"]

and so on.

Generalized Arrays

Using MKS AWK 59

Please note that
money[$1] += $4

is equivalent to
money[$1] = money[$1] + $4

except that the expression inside the square brackets is only evaluated once.
To understand why this is important, consider the following statement:

This notation is explained in
“Compound Assignments” on
page 72.

money[i++] +=2

compared to
money[i++] = money[i++] + 2

In the first case, i only gets incremented once. In the second case, it gets
incremented twice.

If you apply the program to the input record

Jim reading 15 100.00
the action becomes

money["Jim"] += 100.00

As with all numeric variables, money["Jim"] starts out with the value 0. At
the end of the program, the array element contains the amount of money that
Jim spends on all his hobbies.

To display the contents of the money array, you can use a new form of the for
statement:

for (s in money) print s, money[s]

This form of the for statement executes the print action once for every value
that is used as a subscript for the money array. In each loop, the variable s
has one of the subscript values; therefore the first time through the loop, s
might have the value "Jim", the next time "Linda", and so on. The order is
undefined; therefore the complete program

 { money[$1] += $4 }
END { for (s in money) print s, money[s] }

displays the amount that each person spends on his or her hobbies. You
should run this program to see how it works. After you have done this,
replace the print action with a printf to produce more understandable
output.

Arrays

60 PTC MKS Toolkit

Generalized arrays have a wide variety of applications. For example, the
following program produces a list of all the words used in an input text file.

 { for (i=1; i<=NF; i++)
 wordlist[$i] = 1 }
END { for (x in wordlist)
 print x }

Assigning 1 to each element of wordlist is just a dummy action; the
important thing is that the program creates an element of wordlist with a
subscript value that is one of the words in the input text file. The for loop in
the END action then displays all the words that were used as subscript values,
and this is the set of all words used in the file.

As an exercise, modify the preceding program so that it counts how often
each word is used in the input file. At the end, the program should display
each word in the file and how often it was used.

String Subscripts vs. Numeric Subscripts
Previously, we have focussed on numeric subscripts because programmers
are more familiar with them than string subscripts; however, the truth is that
awk converts all array subscripts to strings. The result is similar to
specifying the function

sprintf (CONVFMT, number ...)

where number is the subscript being converted and the CONVFMT variable
gives the format to use. By default, CONVFMT is %.6g. As a result, when you
use arr[1], awk converts the subscript to a string; thus you are really using
arr["1"]:. If you specify arr[1.0], awk converts the subscript to the
simplest equivalent number (namely 1), and then to the corresponding string
and you get arr["1"] again. Thus the following are equivalent:

arr[1] arr[1.0] arr["1"]

Note arr["01"] may look like it should be equivalent, but it isn't; it's a
different string.

Deleting Array Elements

Using MKS AWK 61

Deleting Array Elements
Since array elements are all stored in the computer's memory, you can
decrease memory requirements by deleting elements when you are finished
using them. To do this, use the statement

delete arrayname[subscript]

as in
delete money["Jim"]

As an extension of standard awk, the statement
delete money

deletes the entire array. It is equivalent to
for (ind in money)
 delete money[ind]

Multi-Dimensional Arrays
awk lets you define arrays with more than one index. Indices are separated
by commas and enclosed in square brackets, as in

a[1,2] = 3
b["cat", "dog", "bird"] = "horse"

As an example, here is the definition of an array that records different animal
names.

name["chicken", "male"] = "rooster"
name["chicken", "female"] = "hen"
name["chicken", "young"] = "chick"
name["cattle", "male"] = "bull"
name["cattle", "female"] = "cow"
name["cattle", "young"] = "calf"

As you can see, it is simple to create and manipulate a database that is just an
awk multi-dimensional array.

Arrays

62 PTC MKS Toolkit

Using MKS AWK 63

8User-Defined
Functions

Previous chapters discussed numeric functions like sin() and sqrt(),
and string functions like gsub() and length(). This chapter shows how
awk lets you create your own functions to perform similar kinds of
operations.

Function Definition
In an awk program, a function definition looks like this.

function name(argument-list) {
 statements
}

The argument-list is a list of one or more names (separated by commas) that
represent argument values passed to the function. When an argument name
is used in the statements of a function, it is replaced by a copy of the
corresponding argument value.

For example, here is a simple function that takes a single numeric argument
N and returns a random integer between 1 and N (inclusive).

function random(N) {
 return (int(N * rand() + 1))
}

This uses two built-in functions discussed in the “Simple Arithmetic”
chapter: rand() (which returns a random floating point number between 0
and 1) and int() (which returns the integer part of a floating point number).
Since rand() returns a floating point number between 0 and 1 (not
including 1),

N * rand() + 1

User-Defined Functions

64 PTC MKS Toolkit

is a random floating point number between 1 and N+1 (not including N+1
itself). Applying the int() function to this floating point number obtains an
integer between 1 and N. The return statement returns this value as the
result of the function random().

The definition of random() may appear anywhere in an awk program that a
normal rule can. A call to a user-defined function can appear in the pattern or
action part of any rule.

Suppose you have a file that contains people's names in its first field, and
each of these people is going to roll two six-sided dice. You could simulate
this situation with the following program.

function random(N) {
 return (int(N * rand() + 1))
}
{
 score = random(6) + random(6)
 printf "%s rolls %d\n", $1, score
}

This program consists of a definition for the random() function and a rule
to be applied to every record in the file. The score variable contains the
sum of two simulated six-sided die rolls. This value is displayed along with
the name of the person who supposedly rolled the dice.

You can test this program on the hobbies file if you want. Remember,
however, that the file contains several lines for most people, so the output
shows more than one roll per person.

As another example of the random() function, here is the program that was
used to generate the random baseball scores in the baseball file. The input
data file had a single line giving the names of baseball teams (separated by
tabs).

BEGIN { FS = "\t" } # Tab is field separator
function random(N) {
 # Produce random number between 1 and N
 return (int(N * rand() + 1))
}
{
 # Read in names of baseball teams
 for (i = 1; i <= NF; i++)
 team[i] = $i
 # Generate 100 random scores
 for (i = 1; i <= 100; i++) {
 # Choose teams
 hometeam = team[random(NF)]
 visteam = team[random(NF)]
 # Make sure teams are different

Function Definition

Using MKS AWK 65

 while (hometeam == visteam)
 visteam = team[random(NF)]
 # Generate scores
 homescore = random(13)
 visscore = random(13)
 # Make sure scores are different
 while (homescore == visscore)
 visscore = random(13)
 # Print out score
 printf "%s\t%d\t",hometeam,homescore
 printf "%s\t%d\n",visteam,visscore
 }
}

The comments in the program should make it easy to understand what is
happening in each section. Teams were chosen at random from the list of
teams in the input file, and we made sure we got two different teams. Scores
were chosen at random between 1 and 13, since this range is typical for
baseball games. The final results were displayed with two printf
statements; a single printf statement could have been used, but it would
have been too wide to fit on this printed page.

As another example of the random() function, here is the program that was
used to generate the random lists of numbers in the numbers file.

function random(N) {
 # Produce random integer between 1 and N
 return (int(N * rand() + 1))
}
BEGIN {
 for (i = 1; i <= 30; i++) {
 for (j = random(10); j > 0; j--)
 printf "%d ",random(100)
 printf "\n"
 }
 exit
}

Notice that this program only has a BEGIN rule. This rule displays 30 lines,
each of which contains a random number of integers in the range 1 to 100.
Notice that this program uses random() to choose the integers, and to
decide how many of these integers there would be on each line.

User-Defined Functions

66 PTC MKS Toolkit

Recursion
A function can call itself. This process is called recursion. The usual
example of a recursive function is the factorial() function.

factorial(N)

is the number which is the product of all integers less than or equal to N. For
example,

factorial(4)

is 4*3*2*1 or 24. For convenience, the factorial of any N less than 1 is
considered to be 1.

The following function definition defines the factorial function in a recursive
way.

function factorial(N) {
 if (N <= 1)
 return 1
 else
 return N * factorial(N-1)
}

If N is less than or equal to 1, the factorial is just 1; otherwise, the factorial of
N is N times the factorial of N-1. Thus the factorial of 4 (4*3*2*1) is 4 times
the factorial of 3 (3*2*1). The factorial() function calls itself
recursively to figure out the appropriate result.

The factorial() function shows that a function may have more than one
return statement. When a return statement is executed, the function
immediately stops executing and returns the given value as the function
result.

Call By Value
When a user-defined function is called, the function receives copies of the
argument values specified in the function call. For example, suppose a
program is using a variable named X and calls a user-defined function F()
with

F(X)

Passing Arrays to Functions

Using MKS AWK 67

The function F() receives a copy of the current value of X. Because F()
only has a copy, the function cannot affect the current value of X. For
example, consider this program.

function exchange(A,B) {
 temp = A
 A = B
 B = temp
}
{
 exchange($1,$2)
 print $0
}

If you look at exchange(), it looks like the function swaps the values of
arguments A and B. The value of A is temporarily stored in temp; the value of
B is assigned to A and the saved value of A is assigned to B. Now, when the
main rule of the program issues the function call

exchange($1,$2)

does awk swap the values of the first two fields of the current record? No.
The function is only working with copies of the two fields; the function does
not change the fields themselves.

Notice that the definition of exchange() does not have a return
statement. It is not necessary for functions to return values. If a function does
not have a return statement, the function returns when the last statement
has been executed.

If a function does not use return to return a result, other parts of the
program should not use that function as if it does return a result. If they try to
do this, they will get a result value that is meaningless (that is, undefined).

Passing Arrays to Functions
When an array is passed as an argument to a function, it is passed by
reference. This means that the function works with the actual array, not with
a copy. Anything that the function does to the array has an effect on the
original array.

split() is a built-in function that takes an array as an argument. Its form is
split(string,array)

User-Defined Functions

68 PTC MKS Toolkit

split() breaks up the string into fields, and assigns each of the fields to an
element of the array. The first field is assigned to array[1], the next to
array[2], and so on. Fields are assumed to be separated with the field
separator string FS. If you want to use a different field separator string, you
can use

split(string,array,fsstring)

where fsstring is the field separator string you want to use instead of FS. The
result of split() is the number of fields that string contained.

Note split() actually changes the elements of array. When an array is
passed to a function, the function may change the array elements.

Using MKS AWK 69

9Miscellaneous Topics

In this chapter, we cover a variety of topics which have not yet been
discussed.

The Getline Function
The getline function reads input from the current data file or from a
different file. The function has several different forms, discussed in the
subsections that follow.

Reading from
the Current
Input

The simplest form of getline is just
getline

This reads a new record from the current data file. This automatically
changes the value of $0 and all the other field values. It also changes
variables like NF, NR, and FNR. In other words, using getline in this way is
exactly like what happens when awk reads in a new record in the normal
way. As a simple example,

/xyz/ { print ; getline ; print }

is a rule that prints every record that contains the string xyz. Next, the
getline reads the next record and the final print prints the record.
Therefore, the rule prints every record that contains xyz and also the record
that follows (regardless of what the next record contains).

If you have a program of the form
/xyz/ { print ; getline ; print }
/abc/ { ... some action ... }

the call to getline discards the xyz record and gets a new record.
Therefore the abc rule will be applied to the new record (if appropriate); it
will not be applied to the xyz record, because that record is discarded when
the new record is read.

Miscellaneous Topics

70 PTC MKS Toolkit

If a call to getline appears in the BEGIN action, it starts reading the file(s)
appearing on the command line (if any).

Reading a Line
into a String
Variable

The getline function may also be called in the form
getline variable

This reads in a new line from the current data file, but assigns the contents of
the line to the given string variable. The variables NR and FNR are changed,
to reflect that another record has been read from the input data file, but the
contents of $0 and NF are not changed. Therefore a rule like

{
 getline X
 if (X == $0)
 print "Duplicate line"
}

reads a line into the variable X and compares this new line to the old line that
is still stored in $0.

Reading from a
New File

Another form of getline reads a line from a new file (not the current data
file).

getline var <"filename"

reads a line from the given file and stores the contents of the line in the string
variable var. For example, here is a simple program that compares the
current data file to another file named testfile and prints out a message if
the two are not identical.

{
 getline X <"testfile"
 if ($0 != X)
 print "Not identical!"
}

This rule is executed for every line in the data file. Every time the action is
executed, the getline function reads a new line from testfile and the
new line is compared to the current line from the data file. For every line
read from the current data file, another line is read from testfile and the
two lines are compared. If the two files differ at any point, the message Not
identical! is printed.

A program may also call getline with the form
getline <"filename"

Output to Files and Pipes

Using MKS AWK 71

In this case, a line is read from the given file and assigned to $0. The value
of NF is changed to reflect the new record in $0, but the variables NR and
FNR are not changed, because the record wasn't read from the current data
file.

Reading from
Other
Commands

The getline function can also be used to read data produced by another
command or program.

"command" | getline var

executes the given command and gathers the command's output. The first
line of output is piped (assigned) into the string variable var. For example,

"date" | getline now

executes the command
date

and assigns the output of the command to the string variable now. For
instance, the statements

"date" | getline now
if (now ~ /.*Apr.*/)
 print "April Shower Time!"

read the current date into the variable now and checks to see if the date string
contains Apr.

You can also pipe command output into $0. This is done with a statement of
the form

"command" | getline

This changes the value of $0 and NF but does not change NR or FNR.

Output to Files and Pipes
Details are given in the Output
section of the awk reference page
in the PTC MKS Toolkit Utilities
Reference.

The output of print and printf may be redirected to a file or a pipe.

Only a limited number of files and pipes may be opened at one time. The
close function may be used to close files during execution. In this way, any
number of files and pipes may be used during the execution of an awk
program. You can close both input files (used by getline) and output files
(used by print and printf).

Miscellaneous Topics

72 PTC MKS Toolkit

Executing Programs and System Commands
An earlier section showed how you could execute programs and system
commands from awk programs using the getline function. You can also
execute commands with the system function.

system("command line")

executes the given command line. For example,
system("cd XYZ")

executes a cd command to change the current directory.

Compound Assignments
As you have seen, statements like

sum = sum + value

are common in awk programs. For this reason, awk lets you use a short hand
notation.

sum += value

is exactly the same as
sum = sum + value

but is simpler to write.

The += operation is an example of a compound assignment. Below we list all
the compound assignment operations of awk and their equivalents.,

Compound
Operation

Equivalent

A += B A = A + B

A -= B A = A - B

A *= B A = A * B

A /= B A = A / B

A %= B A = A % B

A ^= B A = A ^ B

The SORTGEN Example

Using MKS AWK 73

As an example
/John/ { sum += $3 }

is a program we could use on our hobbies file to calculate how many hours
a week John spends on his hobbies.

The SORTGEN Example
In the Basics of the PTC MKS Toolkit document, the sort command was
used as part of an example. There, it was mentioned how hard it can be to
remember all of the options to sort, and described an awk program called
sortgen that would generate the correct options for a specification.

Briefly, sortgen takes a description of the layout of the fields in a record,
and emits a command line for sort that carries out the desired sort. Note
that sortgen uses 1-origin (the first field to be sorted on is field 1), and
writes the sort command line to use sort's 0-origin field labelling. Here is
the definition of sortgen.
sortgen - generate sort command
input: sequence of lines describing sort options
output: command line for sort
BEGIN { key = 0 }

/no |not |n't / {
print "error: cannot do negatives:", $0; ok = 1

}
rules for global variables
{ ok = 0 }
/uniq|discard.*(iden|dupl)/ { uniq = " -u"; ok = 1 }
/separ.*tab|tab.*separ/ { sep = "t'\t'"; ok = 1 }
/separ/ { for (i = 1; i <= NF; i++)

if (length($i) == 1)
sep = "t'" $i "'"

 ok = 1
}
/key/ { key++; dokey(); ok = 1 }# new key; must come in order
rules for each key
/dict/ { dict[key] = "d"; ok = 1 }
/ignore.*(space|blank)/ { blank[key] = "b"; ok = 1 }
/fold|case/ { fold[key] = "f"; ok = 1 }
/num/ { num[key] = "n"; ok = 1 }
/rev|descend|decreas|down|oppos/ { rev[key] = "r"; ok = 1 }
/month/ { month[key] = "M"; ok = 1 }
/forward|ascend|increas|up|alpha/ { next }# this is default
!ok { print "error: cannot understand:", $0 }
END { # print flags for each key

cmd = "sort" uniq

Miscellaneous Topics

74 PTC MKS Toolkit

flag = dict[0] blank[0] fold[0] rev[0] num[0] month[0]
sep

if (flag) cmd = cmd " -" flag
for (i = 1; i <= key; i++)

if (pos[i] != "") {
flag = pos[i] dict[i] blank[i] fold[i]
flag = flag rev[i] num[i] month[i]
if (flag) cmd = cmd " -k" flag
if (pos2[i]) cmd = cmd "," pos2[i]

}
print cmd

}
function dokey(i) {# determine position of key

for (i = 1; i <= NF; i++)
if ($i ~ /^[0-9]+$/) {

pos[key] = $i
break

}
for (i++; i <= NF; i++)

if ($i ~ /^[0-9]+$/) {
pos2[key] = $i + 1
break

}
if (pos[key] == "")

printf("error: invalid key specification: %s\n", $0)
if (pos2[key] == "")

pos2[key] = pos[key]
}

Running awk Programs Without awk
For more information about
awkc, see the awkc reference
page in the PTC MKS Toolkit
Utilities Reference.

Sometimes you want to run an awk program as a separate program, without
running awk. Perhaps you want to give a useful program to a friend who
doesn't own awk. PTC MKS Toolkit for Developers, PTC MKS Toolkit for
Interoperability, PTC MKS Toolkit for Professional Developers, and PTC
MKS Toolkit for Enterprise Developers includes an awk compiler, awkc,
which converts awk source programs into standalone programs.

awkc works like awk, and accepts many of the same options. To convert the
awk source file sortgen into the executable sortgen.exe, type:

awkc -o sortgen.exe -f sortgen

The -o option specifies the name of the output executable file; you must
specify a name. Remember that executable files have the .exe extension.

Running awk Programs Without awk

Using MKS AWK 75

If you do not specify a program source file, awkc waits for the program from
the command line, just like awk. For example, if you want to create a simple
program called lineno.exe to display the contents of a file with line
numbers, enter:

awkc -o lineno.exe '{print NR ":" $0}'

Miscellaneous Topics

76 PTC MKS Toolkit

Using MKS AWK 77

Index

Symbols
^ 31
? 32
. (dot) 31
(X) 33
[^X] 33
[X] 32
{m,n} 32
* 31
+ 31
| 31
$ 31, 53

A
Arithmetic Functions, awk 26–28
Arithmetic Operations, awk 13
Arrays 57–61

Deleting Elements 61
Generalized 58–60
Multi-Dimensional 61
with Integer Subscripts 57

awk
Arithmetic Functions 26–28
Arithmetic Operations 13
Arrays 57–61
Basic Concepts 3–11
Built-In String Variables 50–52
Built-In Variables 23
Calling Functions by Value 66
Comments 39
Compound Assignments 72
Compound Statements 42–44
Data and Data Files 3
Escape Sequences 18–20
Executing Programs and System Commands 72

Field separators 10
Fields 4
for Loops 46
Formatted Output 16–20
Getline Function 69–71
if Statement 40–41
Increment and Decrement Operators 23
Matching Expressions with Strings 34
Matching Operators 30
Metacharacters 31–33
Multiple Conditions 36–37
next Statement 47
Numbers and Strings 7
Operation Ordering 15
order of rules 9
Passing Arrays to Functions 67
Pattern Ranges 35
Patterns and Regular Expressions 29–37
Placeholders 17–18
Print Action 7
Program Files 10
Records 4
Recursion 66
Running awk Programs Without awk 74
running from cmd.exe 5
running from command.com 5
Simple Patterns 5–7
Sources of Data 11
String Concatenation 53
String Manipulation 49–56
String Manipulation Functions 54–56
String Subscripts 60
String Variables 49
String vs. Numeric Variables 52–53
Style 42
User-Defined Functions 63–68
valid numbers 7

Index

78 PTC MKS Toolkit

Variables 20–25
while Loops 44–46

awkc 74

B
backslashes 33–34
BEGIN 21, 47, 65
Built-In String Variables 50–52
Built-In Variables, awk 23

C
Commands

awkc 74
print 7

Comments in awk 39
Compound Assignments 72
Compound Statements, awk 42–44
CONVFMT 51
count 20

D
Data Files 3
Deleting Array Elements 61

E
END 43
Escape Sequences, awk 18–20
Examples

&& (double ampersand) 36
|| (double or-bar) 36
akw -f 11
Arithmetic functions in awk 26–28
Arithmetic operations in awk 13
Arrays 57
awkc 74
BEGIN in awk 21
Built-in variables in awk 23
Compound assignments in awk 72
Compound statements in awk 42–44
count 20
Escape sequences in awk 18–20
Exponentiaion operations 14
for Loops 46
Increments and Decrements in awk 23

Matching operators in awk 30
Metacharacters 31–33
next Statement 47
NF, NR, FNR in awk 24
Numbers and strings in awk 7
Numeric variables 52
Operation ordering in awk 15
Order of rules in awk 9
Pattern Ranges in awk 35
Patterns and regular expressions in awk 29–37
Placeholders in awk 17–18
Print Action in awk 7
printf 16, 41
random() 64
Simple patterns in awk 5–7
sortgen 73
String manipulation functions 54–56
String variables 49, 52
Variables in awk 20–25
while Loops 45

Executing Programs and System Commands, awk 72
exit Statement, awk 47
Exponentiation operations, awk 14

F
factorial() 66
Field separators, awk 10
Fields, awk 4
FILENAME 50
FNR 24, 50
for Loops 46
Formatted Output, awk 16–20
FS 50
Function Definition, awk 63

G
getline 69
gsub(regexp,replacement,string_var) 54
gsub(regexp,replacement) 54

I
if 40–41
if Statement, awk 40–41
Increment and Decrement Operators, awk 23
index(string,substring) 55

Index

Using MKS AWK 79

int() 63

L
length 54

M
match(string,regexp) 55
Matching Expressions with Strings 34
Matching Operators, awk 30
Metacharacters 31–33
Multi-Dimensional Arrays 61
Multiple Conditions, awk 36–37

N
next Statement 47
NF 45, 50
NF, awk built-in variable 24
NR 24, 35
null string 7, 49
Numbers and Strings, awk 7
Numeric variables 52

O
OFMT 51
OFS 51
Operation Ordering, awk 15
ord(string) 56
Order of rules in awk 9
ORS 51
Output Redirection 71
Output to Files and Pipes 71

P
Passing Arrays to Functions 67
Pattern Ranges 35
Patterns and Regular Expressions, awk 29–37
Pipes 71
Placeholders, awk 17–18
Print Action,awk 7
printf 16, 41
Program Files, awk 10

Q
Quotes in awk programs 10

R
rand() 63
random() 64
Record separator character 4
Records, awk 4
Recursion 66
RS 50
Running awk from cmd.exe 5
Running awk from command.com 5
Running awk Programs Without awk 74

S
Simple Patterns, awk 5–7
sin() 26
single quotes 10
sortgen 73
Sources of Data, awk 11
sprintf 56
sqrt() 26
String Concatenation 53
String Manipulation 49–56
String Manipulation Functions 54–56
String Subscripts 60
String Variables 49
String vs. Numeric Variables 52–53
Style, awk 42
sub(regexp,replacement,string_var) 55
sub(regexp,replacement) 54
substr(string pos, length) 56
substr(string,pos) 55

T
tilde 30
tolower(string) 56
toupper(string) 56

U
User-Defined Functions 63–68

Index

80 PTC MKS Toolkit

V
Variables, awk 20–25

W
while Loops 44–46

