

How Much Interoperability Do You Want?

By Doug Akers, Product Manager, MKS Toolkit

So you're thinking of bringing Microsoft Windows into your UNIX environment. Well you are not alone.
According to research by International Data Corporation (IDC), a leading industry analyst firm, global
companies have invested in more then 1.5 million Windows server licenses.

Over the past few years, working in a heterogeneous environment has become the norm rather than the
exception. Your decision lies not with whether to integrate UNIX and NT but rather how and to what
extent do you integrate these two systems. More specifically, you must ask yourself a few questions with
respect to interoperability:

1. Do you simply want these systems to talk to each other? Accessibility.
2. Do you want users to have the same level of functionality with your enterprise applications?

Portability.
3. Do you want to merge these applications with your Windows systems? Integration.
4. Do you want to exploit the new technology (i.e. COM, Java, etc) of other Windows applications

and move forward into the future? Modernization.

And what do each of these degrees of interoperability involve?

Application Accessibility
At the low end of platform interoperability is application accessibility, the ability to connect to and access
UNIX file systems and applications from a Windows system. Application accessibility is really a discussion
of two separate issues, user compatibility and platform interoperability. Each sub-section has its own set
of tools and technologies, as well as benefits, and essentially solves a different aspect of application
accessibility.

User Compatibility
When working in a heterogeneous UNIX and Windows environment, wouldn't it be nice if you didn't have
to re-train your UNIX users to use Windows? Wouldn't it be nice if your machines were user compatible?

This concept of UNIX-Windows user compatibility falls into two general categories. The first is traditional
UNIX commands and utilities that follow the same standards and operate in the same way as their UNIX
counterparts but are designed, written, tested, implemented and available for the Win32 system. The
availability of familiar tools will allow your users to be instantly productive in their new environment, and
allows the organization to retain the training investment and reap these productivity gains.

The second category of UNIX-Windows user compatibility is comprised of commands and utilities
developed in the UNIX fashion specifically for the Windows environment. Tools that take advantage of
Windows technologies like the registry, ACLs, user and group administration, and database and internet
infrastructure are a natural extension to the base UNIX command set. These features allow you to not
only manipulate these technologies from the command line or a script, thereby automating many routine
tasks, but also retain the UNIX mind set and way of approaching problems and formulating solutions in
the Windows environment.

Having the ability to solve a problem by firing up a Korn shell and creating a script which uses both
traditional UNIX commands as well as Windows specific UNIX-like utilities is an incredibly powerful thing
to offer Windows users. It is also quite a comfort for a traditional UNIX user to be able to type 'find . -
name "*.c" | grep "myfile"' and not get "The name specified is not recognized as

Build Better Software™ 1

an internal or external command, operable program or batch file." (By the way,
without User Compatibility tools, typing something as simple as 'ls' would give the same error.)

Platform Interoperability
In today's heterogeneous world, you need interoperability between your UNIX and Windows machines,
including file exchange, data exchange, application exchange, remote access and remote administration.

File exchange capabilities, whether using NFS (Network File System), SMB (Server Message Blocks), or
some other solution, allows UNIX and Windows systems to access files physically located on other
systems. This access, tying in the concept of data exchange, allows for the central storage of information
that decreases the duplication and replication efforts required between disconnected systems.

The concept of application exchange, whether character based UNIX applications accessed using Telnet
or graphical UNIX applications accessed using X technology, enables organizations to leverage existing
software assets while gaining the productivity benefits of the Windows platform.

There are a couple of facets to remote access and remote administration. The first, covered off by Telnet,
NFS, and FTP, is the ability to access not only the file system but the configuration and administration
data as well. Being able to administer the entire hybrid system from a single workstation, any workstation,
saves time, removes the expense of investing in two systems on a desktop, and most important,
alleviates the frustration of working in two platforms. The second area is the ability to administer both
systems using a common tool set, or at the very least, a common mind set. Having a set of commands
and utilities that operate consistently across both UNIX and Windows allows companies to leverage the
training and skills of systems administrators.

Platform interoperability is all about access and making the back-end systems transparent to the users,
and allowing organizations to re-coup the costs associated with their existing UNIX systems.

Organizations are not choosing one operating environment over another, specifically opting for Windows
NT instead of UNIX, but rather a mix of the two, as each has its own strengths. Knocking down the
integration hurdles of the two systems at the user compatibility and platform interoperability level is an
essential victory for those that want to succeed in this heterogeneous environment.

Application Portability
There are essentially two types of applications that live in the UNIX world, script-based and binary. Script-
based applications are those that are predominantly run from the back-end by shell (Korn shell and C
shell being the most popular), awk, and/or Perl scripts that manipulate user input, files, and text-based
data. Binary applications, just like in the Windows world, need to be coded, compiled, and linked to
produce executables that are then run by the end-user and interact in one form or another with the
appropriate data.

Porting UNIX Scripts
It is very likely that the majority of your UNIX scripts do not exist as part of a script-based application but
rather in bits and pieces in the ~user/bin directories of you and your users. Script porting effects
everyone in the enterprise and not just the IT and infrastructure departments. Administrators, developers,
QA, and even the less technical around us may use scripts to automate various tasks and simplify data
processing--some even without knowing it.

There are several key issues you have to be aware of when talking about or implementing a script porting
effort:

• Path name differences between Windows and UNIX. Some points you might need to address in
your scripts include:

o the existence of drive letters on Windows;

Build Better Software™ 2

o case-preserving rather than case-insensitive path names;
o spaces in path and filenames;
o different directory separator characters (/ vs \); and
o different path-element separators (: vs ;).

• The difference in the end of line character(s) used on UNIX (carriage-return) and Windows
(carriage-return/line-feed).

• System specific assumptions that are made (i.e. the location of and use for /tmp or /var/tmp vs
/WinNT/Temp or taking into account the Windows registry).

Another item to keep in mind is... be thorough. You may take for granted some of the commands you
have used for years and not realize exactly how painful a job was before you simplified it with a script.
What I am trying to say is... port them all!

Porting UNIX Applications
Binary UNIX applications will not run directly on Win32. This fact is obvious (I hope) to anyone who
develops, tests or is involved in the creation of software in any way. Though the development process is
vastly similar, the underlying systems are not. System APIs, file systems, device drivers etc. are system
dependant and in order to move applications from UNIX to NT this supporting infrastructure has to be
available. (Unless you WANT to rewrite the entire application.)

As organizations are not abandoning UNIX for NT but rather opting for a mix of the two systems, the best
porting strategy will allow you to maintain a single source base for your application regardless of the
target system. (Break out the bucket of #IFDEF's?) Rest assured though, there are solutions available
that will allow you to CRACK that NuT.

The basic process of porting UNIX applications to Windows would look something like this:

• Gain access to the source code from your Windows system;
• Examine the make files, header files, and source code for potential problem areas;
• Compile and link;
• Address any compilation and linkage issues;
• Test and Debug your Win32 application;
• Port supporting scripts;
• Test and retest; and
• Distribute the application.

Some of the caveats that you will need to watch out for when considering a porting effort:

• Ensure that you have a suitable build environment and the appropriate build tools with which to
maximize the effectiveness of your port.

• Ensure that you a) have adequate testing facilities or b) also port your testing application and
environment to Win32 (the section on porting UNIX scripts may be of interest if your testing
environment is heavily script based).

• Keep in mind the way UNIX and Windows systems deal with process management, security, files
and I/O... (really there are too many points to list here, what I suggest is to check out the Cross
Platform Developers Guide (www.mkssoftware.com). Not only does it offer comprehensive “How
to” but also additional sources of information.)

And of course there will be subtle nuances to the porting effort when attempting to move daemons,
threaded applications, or shared libraries. Not to mention if Windows 9x along with Windows NT/2000 is
part of your porting strategies...

Build Better Software™ 3

Build Better Software™ 4

Integrating Applications With Win32
Each of the operating systems, Windows and UNIX, has its own unique strengths. The ability to capitalize
on those strengths, within your environment and applications, is paramount to achieving this level of
interoperability within your organization. The Windows security model, user and group structures, and
most importantly, interaction with the abundance of third party applications available for Win32 are
examples of natural integration points within the environment. In addition to the porting solutions you will
require in moving applications to Win32, you will also need these tools to easily integrate the various APIs
of these applications and the operating system itself.

Evolution Of Legacy Systems
At the apex of UNIX / Windows interoperability is not only the ability to build mission-critical Windows
components from existing UNIX code, and not only integrate those components with current technologies,
but also update, interact and embed these components in the infrastructures of tomorrow. COM, HTML
and the Internet, and Java are taking the IT world by storm. You need the ability within your software and
within your software development tools to completely integrate the Win32 world, as well as branch out
and use these dynamic constructs in order to carry your organization and your enterprise applications
forward.

Each organization has its own distinct set of criteria for its information systems and you will have to
decide how far to delve into interoperability, both now and in the future. There are a number of solutions
available but you must consider complexity, productivity, and cost issues involved with any choice you
make. All you can do is remain informed on the issues and the solutions to help you make the right choice
for your organization.

	By Doug Akers, Product Manager, MKS Toolkit
	Application Accessibility
	User Compatibility
	Platform Interoperability

	Application Portability
	Porting UNIX Scripts
	Porting UNIX Applications
	Integrating Applications With Win32
	Evolution Of Legacy Systems

