
PTC MKS Toolkit
Using MKS Make

PTC Inc.

PTC MKS Toolkit: Using MKS Make

Copyright © 2020 PTC Inc. and/or Its Subsidiary Companies. All Rights
Reserved.

User and training guides and related documentation from PTC Inc. and its subsidiary
companies (collectively "PTC") are subject to the copyright laws of the United States and
other countries and are provided under a license agreement that restricts copying,
disclosure, and use of such documentation. PTC hereby grants to the licensed software
user the right to make copies in printed form of this documentation if provided on
software media, but only for internal/personal use and in accordance with the license
agreement under which the applicable software is licensed. Any copy made shall include
the PTC copyright notice and any other proprietary notice provided by PTC. Training
materials may not be copied without the express written consent of PTC. This
documentation may not be disclosed, transferred, modified, or reduced to any form,
including electronic media, or transmitted or made publicly available by any means
without the prior written consent of PTC and no authorization is granted to make copies
for such purposes. Information described herein is furnished for general information only,
is subject to change without notice, and should not be construed as a warranty or
commitment by PTC. PTC assumes no responsibility or liability for any errors or
inaccuracies that may appear in this document.

The software described in this document is provided under written license agreement,
contains valuable trade secrets and proprietary information, and is protected by the
copyright laws of the United States and other countries. It may not be copied or distributed
in any form or medium, disclosed to third parties, or used in any manner not provided for
in the software licenses agreement except with written prior approval from PTC.

UNAUTHORIZED USE OF SOFTWARE OR ITS DOCUMENTATION CAN RESULT
IN CIVIL DAMAGES AND CRIMINAL PROSECUTION.

PTC regards software piracy as the crime it is, and we view offenders accordingly. We do
not tolerate the piracy of PTC software products, and we pursue (both civilly and
criminally) those who do so using all legal means available, including public and private
surveillance resources. As part of these efforts, PTC uses data monitoring and scouring
technologies to obtain and transmit data on users of illegal copies of our software. This
data collection is not performed on users of legally licensed software from PTC and its

Using MKS Make iii

authorized distributors. If you are using an illegal copy of our software and do not consent
to the collection and transmission of such data (including to the United States), cease
using the illegal version, and contact PTC to obtain a legally licensed copy.

Important Copyright, Trademark, Patent, and Licensing Information: See the About
Box, or copyright notice, of your PTC software.

UNITED STATES GOVERNMENT RIGHTS

PTC software products and software documentation are “commercial items” as that term
is defined at 48 C.F.R. 2.101. Pursuant to Federal Acquisition Regulation (FAR) 12.212
(a)-(b) (Computer Software) (MAY 2014) for civilian agencies or the Defense Federal
Acquisition Regulation Supplement (DFARS) at 227.7202-1(a) (Policy) and 227.7202-3
(a) (Rights in commercial computer software or commercial computer software
documentation) (FEB 2014) for the Department of Defense, PTC software products and
software documentation are provided to the U.S. Government under the PTC commercial
license agreement. Use, duplication or disclosure by the U.S. Government is subject solely
to the terms and conditions set forth in the applicable PTC software license agreement.

PTC Inc., 121 Seaport Blvd, Boston, MA 02210 USA

PTC Inc.
12015 Lee Jackson Memorial Hwy,

Suite 150
Fairfax, Virginia 22033

Phone: +1 703 803-3343
Fax: +1 703 803-3344

E-mail: MKSToolkitInfo@ptc.com

10.3-1000

iv PTC MKS Toolkit

Technical Support
To request technical support, please contact us on the PTC eSupport Portal below. In your request please
include your Service Contract Number (SCN), the name and version number of the product, your serial
number, and the operating system and version/patch level that you are using. Contact PTC Technical
Support at:

Technical Support: http://support.ptc.com/

When reporting problems, please provide a test case and test procedure, if possible. If you are following up
on a previously reported problem, please include the case number in the subject line of your correspondence.

Finally, please give us your e-mail address and telephone number so that we may contact you.

Using MKS Make v

Table of Contents

Technical Support ..iv

1 Introduction...1

2 Compatibility Issues...3

Getting the Right Make...3
Search Order ...4
Changing Your Search Order ...4

3 Getting Started with MKS Make7

Dependency of Files ...7
Makefiles ..8
Writing a Rule...9

File Names Containing a Colon...10
White Space ...10
Continuation Lines ..10

Comments ...11
More About Rules...11

Missing Rules ..11
More About Recipes ..12
Command Prefixes ..12

4 Running MKS Make..13

Specifying Targets on the Command Line ...13
Using a Different Makefile ...14
The Command Line ..14
How Make Finds Its Rules..15

Built-in Rules...16
Default Rules ...16
Local Default Rules ...16
Makefile...16

5 Using Macros..17

Macro Naming Conventions ...19
Defining Macros on the Command Line ..20
Nesting Macros in Other Macros..20
Modifying Macro Expansions ..22

String Substitution ...23

vi PTC MKS Toolkit

Tokenization ..24
Prefix and Suffix Modifiers ...25

6 Controlling MKS Make ...27

Attributes ..27
Special Target Directives..28
Special Macros..32

Control Macros ..33
Attribute Macros..34
Runtime Macros ..35

Examples ..36
Dynamic Prerequisite Macros ..37

How Make Finds Files ..38
Example: Directory Navigation Within a Makefile39
Example: Including External Makefiles.................................40
Example: Creating Prologs and Epilogs.................................41

7 Using Inference Rules..43

Metarules ..44
Using the :| Rule Operator with Metarules46
Transitive Closure..47

Suffix Rules ..48

8 More About Executing Recipes.............................51

Regular Recipes ..51
Built-In Commands...52
Group Recipes...52
Control Macros Used With Group Recipes ..53
Text Diversions...54

9 Making Libraries ...57

Metarules for Library Support ..58
Suffix Rules for Library Support ..59

10 Compatibility Considerations................................61

Conditionals ..61
Other Makes..64

Borland Make ..64
Microsoft Make ...65
BSD UNIX Make ..65
System V MAKE...66

11 Using the Generic CC Interface.............................67

Compilation Configuration Files ..68

Using MKS Make vii

Using CC...68
Generic Command-line Format ..69
Examples of Use ...69

12 Problem Solving ...71

Without a Makefile ...71
Simple Makefile..71
Separate Object Directory...72
Using a Library ...73
Recursive Makes...73
Clean-up..74
Back-up...75
Default Rules ..75

13 Limits ...77

Index ..79

viii PTC MKS Toolkit

Using MKS Make 1

1Introduction

MKS Make offers developers, project managers and authors an efficient
way to automate the production and maintenance of any project, large or
small. Whenever you make changes to an element of a development project,
MKS Make automatically re-compiles all related files and no others, saving
valuable time and eliminating errors.

For example, suppose you build a program from several separate object
modules, each depending upon its own file. If you change a source file, MKS
Make automatically determines which object modules are out of date (that is,
older than the corresponding source files), recompiles the changed source
files, and links the component object modules to produce an updated version
of the program.

In large, complex projects, where a change to one file may necessitate
changes in many others, it is easy to lose track. MKS Make eliminates the
worry of manually keeping your project up to date. Just give it a list of
interdependent files and a description of how to rebuild each, and
MKS Make takes care of the rest.

Introduction

2 PTC MKS Toolkit

Using MKS Make 3

2Compatibility Issues

The Make utility originated under the UNIX operating system. With a few
exceptions, MKS Make conforms to the POSIX and UNIX 98 standards,
although for portability and ease of use, MKS Make supports several
extensions to these standards. With MKS Make, you can create portable
makefiles that work on operating systems manufactured by IBM, Hewlett
Packard, DEC, and Microsoft, or any others that follow the POSIX and
UNIX 98 standards.

For details on these features, see
the make reference page in the
online PTC MKS Toolkit Utilities
Reference.

MKS Make also conforms with UNIX versions to the greatest extent
possible, and makefiles that work with a UNIX make have the same
behavior when used with MKS Make. MKS Make also has many additional,
useful features that are extensions to the POSIX guidelines.

Getting the Right Make
Most C compilers come with their own version of make. There are many
reasons to believe MKS Make is superior to these other versions. For the
time being, be aware that your system may already have a version of make
from some other source. If you run a make command and it does not behave
the way our documentation says, you might be running one of the other
versions.

If you are using the MKS KornShell, part of PTC MKS Toolkit, you can find
out which version of make you are running by using the which command, as
in the example

which make

The reply should look something like the following:
ROOTDIR/mksnt/make.exe

Compatibility Issues

4 PTC MKS Toolkit

where ROOTDIR represents the contents of the ROOTDIR environment. If you
are not running MKS Make and you want to do so, simply change your
search order to include the directory with MKS Make before the directory
containing another make executable.

Search Order
Whenever you use a program, the system must locate a file containing the
program you want to run. It does this using the PATH search order.

For more information about
search order, see the
documentation for your operating
system.

You can install MKS Make into any directory in your path, or change your
search order to accommodate a new directory for MKS Make.

Changing Your Search Order
To display your search order under command.com or cmd.exe, use the
command

path

If you are working in the MKS KornShell (sh.exe), use
echo $PATH

which displays a list of directory names separated by semicolons. When you
issue a make command, the command interpreter searches for a make
program in each of these directories, in the order they appear.

MKS Make is usually installed in the ROOTDIR/mksnt directory.

If the command interpreter finds one of the other make programs before it
finds MKS Make, it runs that one instead.

If you find out that the system is running one of the other make programs,
there are two ways to fix the problem. First, you can explicitly tell your
command interpreter to run the correct version of make by specifying the
appropriate path to the program. For example, you could type one of the
following:

$ROOTDIR/mksnt/make (MKS KornShell)
%ROOTDIR%/mksnt/make(cmd.exe)

Changing Your Search Order

Using MKS Make 5

See your operating system
documentation for more
information on changing your
path search order.

On Windows NT/2000 and Windows 95/98/Me systems, you change your
search order by changing your initial configuration files, changing the user
registry database (on NT/200 only), or changing the value of the PATH (Path
under NT/2000’s cmd.exe) environment variable.

Compatibility Issues

6 PTC MKS Toolkit

Using MKS Make 7

3Getting Started with
MKS Make

To use MKS Make, you require a makefile. A makefile contains a list of
rules. Rules describe the dependencies among files that you want
MKS Make to maintain. A rule may also specify the commands—or
recipes—for rebuilding files when required.

You create makefiles as simple text files, so you can use your favorite text
editor or word processor to create and edit them. You must make certain you
save the files without any embedded word processor formatting characters
(such as changes in font); MKS Make cannot interpret these special
characters.

You must also ensure the editor you use does not translate the <Tab> control
character into a group of spaces (make signals the beginning of recipe lines
with the <Tab> character). Most editors allow you to turn off the <Tab>
translation feature or insert a literal <Tab> character.

When you run the make program, it processes the makefile, checking each
rule for files you have recently modified. If make finds such a file, it may
also discover a dependent file that has not been rebuilt since your
modifications to the first file. If this is the case, make proceeds to process the
recipe associated with the dependent file‘s particular rule.

Dependency of Files
The word dependency implies that a file may depend upon another file or
files for some reason. MKS Make refers to files that depend on others as
targets. It refers to the files a target depends on as prerequisites. The same
file can be a prerequisite, and later a target, in the same makefile. If you
modify a prerequisite file, make discovers it needs to rebuild its associated
target file. If you remove a target file, make takes the steps necessary to
recreate it.

Getting Started with MKS Make

8 PTC MKS Toolkit

When a file that is a prerequisite for a target is modified, or recently
changed, that file’s target is considered to be out of date with respect to that
prerequisite.

The makefile describes the dependency relationships of targets and
prerequisites. Each rule identifies a target file, and specifies the target’s
prerequisite file(s). The rules’ recipes describe any actions MKS Make must
take if it discovers an out-of-date target.

Makefiles
At this point, an example may help explain these concepts. This example is
purposefully larger than necessary and somewhat limited. Later in this
chapter, you can learn how to make your makefiles more useful and
compact. Here is a sample makefile for a small program, using the Microsoft
Visual C/C++ compiler:

program.exe : main.obj func.obj
cl main.obj func.obj /o program.exe

main.obj: main.c
cl /c main.c

func.obj: func.c
cl /c func.c

All C/C++ compilers use similar makefiles is similar. For the sake of
convenience, this chapter looks at the Microsoft Visual C/C++ example
more closely, but what follows should also apply to other compiler.

The makefile consists of three rules. The first rule in the example looked like
program.exe : main.obj func.obj

cl main.obj func.obj /o program.exe

The first line in this rule states that the file program.exe depends upon the
two .obj files that follow the colon. If any or all of the .obj files have
changed since the last time program.exe was made, MKS Make attempts
to remake it. It does this using the recipe on the next line. This recipe
consists of the Microsoft Visual C/C++ cl command that links
program.exe from the two object files.

However, before MKS Make remakes program.exe, it checks to see if any
of the .obj files need remaking. To do this, it checks the other rules in the
makefile to determine the dependencies of the .obj files.

If any of the .obj files need remaking (because their associated .c files
have been changed), MKS Make remakes the .obj files first using the cl
command. It then makes program.exe.

Writing a Rule

Using MKS Make 9

MKS Make updates each target file (the program.exe file, and all the .obj
files) by executing the recipe that follows the appropriate file.

Writing a Rule
The previous example showed a collection of simple rules. All of the rules
follow a consistent format:

target target… : prerequisite prerequisite…
<Tab> recipe

MKS Make accepts rules with much more complex formats, but this
example uses just this simple form.

For more information about
special targets that are not files,
see “Special Macros” on page 32.

The term target usually refers to a file made from other files. Each rule may
have several targets. MKS Make also recognizes a number of special targets
that are not files.

The prerequisites consist of a list of files (each rule may also have more than
one prerequisite). The targets depend directly or indirectly on these files; if
any of the files change, the targets require remaking. The prerequisite list
appears on the same line as the targets, separated from the targets by the
colon rule operator.

Consider the following example:
func1.obj func2.obj : includes.h

cl /c func1.c
cl /c func2.c

The rule in the example describes a dependency between a header file (the
prerequisite) and the object files that use it (the targets). If you change the
prerequisite file includes.h, you must update both target files,
func1.obj and func2.obj. Notice that you do not need to express the
dependency between the header file and the source files, as the contents of
the object files depend, in turn, upon the source files.

The recipe consists of one or more commands MKS Make uses to remake
the target(s) when necessary. The recipe usually begins on the line following
the target and prerequisite list. A recipe can consist of any number of lines.
Each and every line in the recipe must begin with a <Tab> character. A line
that does not begin with a <Tab> signals the start of a new rule.

Note A common cause of syntax errors results from makefiles with leading
blank characters at the beginning recipe lines.

Getting Started with MKS Make

10 PTC MKS Toolkit

In the interests of efficiency, MKS Make executes most recipe lines itself.
However, a recipe line may contain a character special to your command
interpreter or shell (for example, the > and < redirection symbols). In these
cases, MKS Make calls the command interpreter or shell to execute the line,
so the special characters are handled properly.

File Names
Containing a
Colon

Occasionally, the names of target files may contain a colon.
a:file

Normally, MKS Make interprets a colon as a rule operator—the mark
separating the target names from the prerequisite list. To avoid confusion,
use quotes to enclose any file name that contains a colon:

"a:program.exe" : "a:main.obj" func1.obj…
recipe

White Space White space consists of one or more blanks or <Tab> characters. White
space separates the names of items in a target or prerequisite list. You can
also surround the colon between the target list and the prerequisite list with
white space; however, you do not have to.

You can also insert blank lines wherever you want in a makefile. make
ignores blank lines when it reads the makefile.

Continuation
Lines

Using a backslash character (\) as the last character of a line indicates the
line is not finished—that it continues on to the next line of the file. The first
two lines in the following example have the same meaning as the third:

target list : \
prerequisite list

target list : prerequisite list

You might find this useful if the length of a list makes it impossible to fit
everything on one line. You can do this several times. A single line can be
broken into any number of continuation lines.

Note Always use a backslash to continue a line, whether you use the MKS
KornShell, command.com, or cmd.exe.

Comments

Using MKS Make 11

Comments
A makefile can contain comments. A comment begins with a sharp character
(#), and extends to the end of the line. Consider the following example:

This is a comment line
target : prerequisite #This is another comment
recipe # One more comment

MKS Make ignores all comments.

More About Rules
So far, this chapter has given a simple description of what rules in a makefile
look like. All rules use the following general format (for a complete
description, see the man page for the make command).

targets [attr] oprtr [prereqs] [;recipe]{<Tab> recipe}

Missing Rules If MKS Make cannot find a rule for a particular target, it displays this
message on the standard error stream:

Make: Don't know how to make target

If it cannot find a rule for a particular prerequisite and the file named by that
prerequisite does not already exist, the same message is displayed.

targets A list of one or more files or labels.

attr A list, possibly empty, of attributes to apply to the targets. For
more information, see “Controlling MKS Make” on page 27.

oprtr A rule operator, separating the targets from the associated
prerequisites. Usually this is a colon, but MKS Make supports a
number of other rule operators for specific purposes. For more
information, see the make online reference page.

prereqs Zero or more file names the specified targets depend on.

recipe May appear on the same line as the prerequisites, following
them, and separated by a semicolon. If such a recipe exists,
MKS Make uses it as the first in a list of recipe lines defining a
method for remaking target. Additional recipe lines may follow
the first line of the rule. Each additional recipe line must begin
with a <Tab> character.

Getting Started with MKS Make

12 PTC MKS Toolkit

More About
Recipes

Recipes are lists of lines used by MKS Make to rebuild the target(s) listed in
the associated rule. A rule may have zero or more recipe lines. Comments
and empty lines are ignored when recipes are read.

When MKS Make is reading recipes and encounters a line that does not
begin with a <Tab> character, it assumes the previous rule has finished and
a new one has begun.

Command
Prefixes

You can begin any recipe line with a command prefix immediately following
the <Tab> character. MKS Make supports the following three command
prefixes:

For more information, see the
make reference page in the online
PTC MKS Toolkit Utilities
Reference.

You can use more than one command prefix with a recipe line, provided they
are grouped together, immediately following the <Tab> character. You may
put the prefixes for a recipe in any order, for example:

-@ echo "rebuilding foo

- (dash) Ignore non-zero exit values when executing this recipe
line. Use this when you want to use a command in a recipe
that may not return a proper (zero) exit value when it
succeeds.

@ (at sign) Inhibits the echoing of a recipe line to the standard output
prior to its execution. Use this if a recipe line sends
messages to standard output, and you do not want to
clutter the output stream.

+ (plus sign) Forces execution of the recipe line, even when the -n, -q,
or -t options are specified on the command line.

Using MKS Make 13

4Running MKS Make

To run MKS Make, enter
make

at the command line. By default, MKS Make expects your makefile to be in
the current directory and to be called makefile (in upper, lower, or mixed
case). Once it finds your makefile, MKS Make checks to see if the first
target has become out of date with respect to its prerequisites. As part of this
process, it first looks to see if the prerequisites themselves require remaking.
MKS Make rebuilds all the files it needs to properly rebuild the first target.

Often, you might find it useful to put an artificial rule at the beginning of
your makefile, naming all the targets you remake most frequently.

herring : prerq1 prerq2…

The target file in the example (named herring) does not exist, but when
MKS Make tries to rebuild it, it automatically checks each one of its
prerequisites to determine whether they require rebuilding.

Specifying Targets on the Command Line
If you specify the names of specific targets on the command line,
MKS Make attempts to remake only the targets you specify. Again, it first
attempts to rebuild any prerequisites (associated with your specified targets)
that have become out of date with respect to any files they depend on.

In the following example, make rebuilds the given object files, should they
require it.

make func1.obj func2.obj

Running MKS Make

14 PTC MKS Toolkit

Using a Different Makefile
If you give your makefile a name other than makefile, or place it in a
separate directory, you usually have to specify its name. You do this with the
-f option, for example:

make -f foo.mk

You can combine options to make, as in the example
make -f foo.mk func1.obj func2.obj

The Command Line
The previous sections gave you a glimpse of MKS Make’s versatility. You
can specify a number of options and items on the command line to modify its
behavior. In general, your command lines should conform to the format

make [options] [macro definitions] [target…]

You can specify a number of options on the command line. Options take the
form of a single letter, prefixed with a dash. MKS Make distinguishes
between uppercase and lowercase on the command lines, so it would treat
the -e option and the -E option differently.

When specifying several options on the same command line, you can bundle
them together following a single dash. For example

make -n -u
make -nu

are considered identical.

Some options require an additional argument, as you saw previously with the
-f option. You can bundle one of these options with others on the command
line; however, it must appear last in the bundle, to allow for its argument.
These lines are considered identical:

make -nuf foo.bar
make -n -u -f foo.bar

You may also append an argument directly to an option, although this syntax
is now obsolete

make -nuffoo.bar

The following table briefly explains some of the most common command-
line options. For the complete list of options, see the online reference page
for the make command.

How Make Finds Its Rules

Using MKS Make 15

Any macro definitions you specify on the command line have the same form
as macro definitions in a makefile, and supersede definitions in the makefile
or default rules file. You can place macro definitions anywhere on the
command line, even after the names of targets.

For more information on the -D
option, see the make reference
pagein the online PTC MKS
Toolkit Utilities Reference. For
more information on macros, see
“Using Macros” on page 17.

You can also define macros on the command line with the -D option. This
option forces MKS Make to use these macro definitions before reading any
makefile.

How Make Finds Its Rules
When you run MKS Make, it uses rules from a number of different sources.
The following subsections describe each source of rules in the order used by
make.

Option Description

-f file Uses file as the makefile. If you specify a dash in place of file,
MKS Make reads the makefile from standard input. In other
words, it expects you to type in the makefile from the keyboard,
or redirect it from a file.

-k Makes all independent targets, even if an error occurs.
Ordinarily, processing stops after a command in a recipe
produces an error. Specifying -k forces MKS Make to continue
making other targets, provided they are unrelated to the one
associated with the error.

-n Displays all the commands needed to update the chosen
targets, but does not execute them. Use this to check that your
makefile does exactly what you expect it to do, without actually
affecting any of your files.

-u Rebuilds all the targets whether their prerequisites have
changed or not. Use this to guarantee that everything gets
rebuilt at the same time, whether needed or not.

Running MKS Make

16 PTC MKS Toolkit

Built-in Rules MKS Make contains a number of built-in rules. These rules may evolve
somewhat from release to release. You cannot change them yourself. You
can display the built-in rules for your version of make, with the -V option.

Note The POSIX and UNIX 98 standards refers to default rules as built-in
rules. PTC MKS Toolkit uses the term built-in to emphasize the difference
between the provided rules that you cannot configure (built-in) and those that
you can (default).

Default Rules Default rules are specified in the startup file. MKS Make uses ROOTDIR/
etc/startup.mk as its startup file unless you specify a different name. To
a different name for the startup file, set the MAKESTARTUP environment
variable to desired name, or use the -D option command line to assign the
desired name to the MAKESTARTUP control macro.

For more information on the
control macros, see “Controlling
MKS Make” on page 27.

You can edit the contents of the startup file with a normal text editor. When
you install MKS Make, a startup file is provided for you in ROOTDIR/etc/
startup.mk. You should not customize this file until you are familiar with
MKS Make and know how to modify its behavior. If you delete this file or
put incorrect material into it, MKS Make does not work as documented.

Local Default
Rules

The last line of the default startup file prompts MKS Make to include a file
called startup.mk in the current directory. If this file exists, MKS Make
reads it next. Once you are more familiar with MKS Make, you may want to
create different local default rules files for different projects.

Makefile Lastly, under the direction of its built-in rules, MKS Make looks for a file
called makefile in the current directory. If no such file exists, it looks for a
file called Makefile in the current directory. If it cannot find either file, it
displays a message and stops.

You can specify a makefile with a different name, or in a different directory,
by using the -f option, as previously described.

Using MKS Make 17

5Using Macros

Suppose you use MKS Make to maintain a C program that you are
compiling. The Microsoft Visual C/C++ compiler lets you optimize the
object code produced for various Intel processors. For example, the /G3, /
G4, and /G5 options optimize the code for the 80386, 80486, and Pentium
processors, respectively. Other compilers may offer similar options.

To optimize all your program modules for the same processor, you could
write your makefile like the following example for the Micro

all the program modules with the same memory model options, so you could
write your makefile like the one in following example for the Microsoft
Visual C/C++ compiler.

module1.obj : module1.c
cl /G5 /c module1.c

module2.obj : module2.c
cl /G5 /c module2.c

And so on

These commands all optimize the code for the Pentium processor with the /
G5 option. They also make use of the /c option, which compiles the source
code without linking it.

Now suppose you want to optimize your program for the older 80486
processor. You would need to go back to your makefile and change all the /
G5 references to /G4. This task is time-consuming and error-prone. You may
easily miss one of the recipes that require changing, or make a typing
mistake while you are editing the file.

Macros help solve this problem. A macro is a symbol that represents a string
of text. When MKS Make encounters a macro in your makefile, it replaces
the macro symbol with its predefined value (the text string). This process of
replacement is called expansion. You can define a macro at the top of your
makefile, by using a line with the format

macro_name = text_string

Using Macros

18 PTC MKS Toolkit

Later on in your makefile, you can use this macro to replace its text string
equivalent. To force MKS Make to expand the value of a macro, you
surround it with a dollar sign and either parentheses or braces.

$(macro_name)

or
${macro_name}

Refer back to the previous processor optimization example. You can use
macros to represent explicit references to the processor option, the compiler
name, and so on.

CC = cl
CFLAGS = /G5
O = .obj
module1$(O) : module1.c

$(CC) /c $(CFLAGS) module1.c
module2$(O) : module2.c

$(CC) /c $(CFLAGS) module2.c
And so on

You create a macro in the first line named CC, and assign it the command
name that invokes your compiler.

On the second line, you create the macro CFLAGS, and assign it the options
you want your compiler to use.

On the third line is an example of a common practice used with
MKS Make—the assignment of your system’s object file extension to the O
macro (the letter O, not zero). This macro is useful for helping to ensure the
portability of your makefiles across platforms. Object files typically employ
.obj as the object file extension on PCs. On POSIX and UNIX platforms,
object files typically use .o as the object file extension. Notice that our
definition of the O macro includes the dot as well as the extension name. We
do this so the makefile can work on platforms that do not use an extension
for object files at all (and thus, have no dot in object file names).

This convention is also used for the A and E macros, which expand to the
archive library and executable file extensions, respectively. The examples in
this chapter use these macros; the default rules file provided when you
installed MKS Make defines values appropriate to your system.

Now, when you run MKS Make with this makefile, it expands all the
occurrences of $(CC) and $(CFLAGS), replacing the macro references with
the strings you have defined at the top of the file.

To change the options you pass to the compiler, you only have to make a
single change—the value assigned to the CFLAGS macro at the top of the
makefile. You can even switch to a different compiler by changing the value

Macro Naming Conventions

Using MKS Make 19

of CC to indicate the command name for the new compiler. Adding the new
options you need to pass to your new compiler is easy; you have just learned
how to do that. You do not ever have to touch the rules in the body of the
makefile; you only need to change the macro assignments at the top.

Notice that, in the example, the -c option is in the body of the makefile. You
may want some options to take effect all the time and not change every time
the values of your macros change. Be careful with this practice, though; if
you specify values for your macros that are incompatible with the options
you have left in the main body of your makefile, you may run into problems.

Macro Naming Conventions
You can use any sequence of standard alphanumeric characters in a macro
name, although the name cannot begin with a digit. You can also use
underscores. You should use uppercase letters in macro names, as it makes
them easy to identify.

Actually, you can use nearly any printable characters in macro names, except
any of the following:

: ; $ { } =

However, your makefiles are much more readable if you use only uppercase
letters, numbers, and the underscore in your macro names.

See “Nesting Macros in Other
Macros” on page 20.

Since you can nest macro names inside one another, take care when using
the dollar sign in macro values. You must type two dollar signs in sequence
to represent a literal dollar sign when the macro is expanded. The following
example shows a macro called DOLLAR, holding the string for a dollar sign:

DOLLAR = $$

When MKS Make expands the DOLLAR macro, it replaces the macro with a
single dollar sign.

You can assign an empty (NULL) string to a macro (MKS Make predefines
NULL). You might find this useful with macros that you only want to use in
certain cases. To assign a null value to a macro, simply leave the right side of
the assignment blank.

MY_BLANK_MACRO =

Note that MKS Make ignores white space (blanks and tabs) in the string
after the equal sign. To include white space as part of your macro string,
enclose it in double quotes.

Using Macros

20 PTC MKS Toolkit

Finally, if you create a macro with a single-letter name, MKS Make lets you
omit the parenthesis in references to the macro. Thus, if you use the
conventional E macro to hold the your executable file extension string, you
can place $E in the makefile and MKS Make expands this to E’s contents.
The rest of the examples in this manual employ this convention.

Defining Macros on the Command Line
You can define (or redefine) macros anywhere on the make command line.
In the following example, the user defines a macro specifying the directory
containing object modules:

make DIROBJ=/usr/project/obj program.exe

For more information on the -D
option, see the make reference
page in the online PTC MKS
Toolkit Utilities Reference.

If you define a macro on the command line, the value cannot be changed by
macro definitions in makefiles that are read by the command. However, you
can force MKS Make to handle the command-line macro before reading the
makefile with the -D option; if you use this option to define a macro on the
command line, any definitions made in the makefile overwrite it.

If your command-line macro needs to have white space in it, you need to
surround the entire definition in quotes.

make "FILES= a.c b.c c.c" target1 target2

Note MKS Make ignores any leading or trailing white space around the macro
definition, so it treats " FILES = foo bar " and "FILES=foo bar" as
equivalent.

Nesting Macros in Other Macros
Any macro’s value can contain another macro reference. When MKS Make
expands a macro and detects another macro reference in the replacement
string, it automatically expands that reference as well, for example:

PROJECT = myProj
SRCDIR = $(PROJECT)/src

Nesting Macros in Other Macros

Using MKS Make 21

When make expands the SRCDIR, it notices that another macro string has
appeared, and expands the second macro as well.

/usr/lindsay/$(SRCDIR)

expands first to
/usr/lindsay/$(PROJECT)/src

and expands again to
/usr/lindsay/myProj/src

For a more useful example, suppose you maintain one set of header files, but
each person working with those header files has their own directories
containing source and object files. You can still have one makefile to trace
the dependency between a header file and each person’s source files.

these macros contain the appropriate directories
SRCDIR = $(HOME)/project/src
OBJDIR = $(HOME)/project/obj
HDRDIR = /usr/main/hdr
makefile rules follow
$(OBJDIR)/module$O : $(HDRDIR)/includes.h

compile the out of date object file
from its source

$(CC) -c $(CFLAGS) $(SRCDIR)/module.c

To use this makefile, you would need to specify a command-line value for
HOME on the command line, using the -D option (to assign the command-line
value to HOME before reading the makefile and performing any macro
expansion).

For any value of HOME, you can see that the makefile defines macros for all
the appropriate directories. If HOME is /usr/main, when MKS Make
expands the $(SRCDIR) and $(OBJDIR), it also expands the $(HOME)
macro. $(SRCDIR) eventually expands to

 /usr/main/project/src

If Lindsay wanted to use the makefile, the following command would
perform the appropriate expansion:

make -DHOME=/usr/lindsay module.obj

or, if Lindsay has exported $HOME in the environment
make -DHOME=$HOME module.obj

Using Macros

22 PTC MKS Toolkit

Notice that you must name the target explicitly on the command line; you
can not use the O macro. You may define macros on the command line, but
you cannot pass them as part of a target’s name. You may only use the values
assigned to macros within the makefile itself.

Note If you define a macro on the command line with the -D option, you may
include these macros as components of target names on the command line. For
more information on the -D option, see the man page for the make command.

Also notice that Lindsay provided a specific value for HOME on the command
line. To avoid this requirement, you could import a value for a macro from
the environment, with the .IMPORT special target directive in the makefile.

For more information on special
target directives (and .IMPORT in
particular), see “Controlling
MKS Make” on page 27, and the
make reference page in the online
PTC MKS Toolkit Utilities
Reference.

.IMPORT: HOME
SRCDIR = $(HOME)/project/src
and so on…

Note Using .IMPORT this way is not strictly necessary, as MKS Make imports
variables from the environment by default.

Modifying Macro Expansions
You can modify the way MKS Make expands macros by adding a colon
followed by one or more macro modifiers after the macro name:

$(macro_name:modifier_list:modifier_list:…)

Each modifier_list consists of one or more characters that tell MKS Make to
expand the macro in a specific way. MKS Make applies each macro modifier
in the modifier_list from left to right.

For example, if you have a macro called FILE that represents the full path
name of a file, you can use $(FILE:d) to select only the directory portion of
the path name:

FILE = /usr/lindsay/program.c
$(FILE:d)

expands to
/usr/lindsay

Modifying Macro Expansions

Using MKS Make 23

You can use uppercase or lowercase letters for macro modifiers; so both
$(FILE:d) and $(FILE:D) would produce /usr/lindsay in the previous
example.

The following table describes some of the modifiers you can use.

String
Substitution

The substitution modifier differs slightly from standard modifiers. Use the
substitution modifier to search for all occurrences of a substring in the macro
string and replace them with another substring. The format of the
substitution modifier is:

:s/string/replace/

Using the macro definition for FILE from the previous section.
$(FILE:s/lindsay/dale/)

expands to
/usr/dale/program.c

You can apply the substitution modifiers with other modifiers, and
MKS Make applies the modifiers in order from left to right. For example

$(FILE:s/lindsay/dale/:d)

Modifier Description

b Use the base file name, without suffix, of a macro string path
name.

d Use the directory portion of a path name. This modifier gives a
dot for path names that do not have explicit directories.

f Use the full file name portion, with suffix, of a path name.

l Convert all characters in the macro string to lowercase.

s Perform string substitution. For more information, see “String
Substitution” on page 23.

t Expand the macro into tokens. For more information, see
“Tokenization” on page 24.

u Convert all characters in the macro string to uppercase.

^ Add a prefix string to each token in the macro string. For more
information, see “Prefix and Suffix Modifiers” on page 25.

+ Append a suffix string to each token in the macro string. For
more information, see “Prefix and Suffix Modifiers” on
page 25.

Using Macros

24 PTC MKS Toolkit

expands to
 /usr/dale

You can use any printing character in place of the slash to delimit the pattern
and replacement substrings, as long as you use it consistently within the
command. For example

$(FILE:s~lindsay~dale~:d)

expands to
/usr/dale

For compatibility with UNIX System V make, MKS Make also supports the
suffix replacement modifier. This modifier, when used according to the
following example, replaces any occurrences of old_suffix with new_suffix.

$(macro_name:old_suffix=new_suffix)

Notice that the string replacement only applies to file suffixes. Consider the
example

FILE = /usr/lindsay/src/parse.y
$(FILE:.y=.c)

expands to
/usr/lindsay/src/parse.c

Tokenization MKS Make interprets any sequence of non-white space characters as a
token. The format of the tokenization modifier is

$(macro:t"string")

The construct expands the given macro, inserting string between tokens.
This process is called tokenization. Consider the example

LIST = a b c
$(LIST:t"+")

expands to
a+b+c

Notice that MKS Make places the + between each pair of tokens, but not
after the last one.

You can use a number of special escape sequences in the separator string.
The following table describes each one’s effect.

Escape
Sequence

Effect

\" "

Modifying Macro Expansions

Using MKS Make 25

In this example, using the previous definition of LIST
$(LIST:t"+\n")

expands to
a+
b+
c

Prefix and
Suffix Modifiers

You use prefix and suffix modifiers to add a string to the beginning or end of
each space separated token in the macro string, according to the form

$(macro_name:^"prefix_string")
$(macro_name:+"suffix_string")

In an example using the TEST macro
TEST = main func1 func2
$(TEST:^"/src/")

expands to
/src/main /src/func1 /src/func2

and
$(TEST:+".c")

expands to
main.c func1.c func2.c

\\ \

\a Alert (bell sound)

\b Backspace

\f Formfeed

\n Newline

\r Carriage Return

\t Horizontal Tab

\v Vertical Tab

\nnn Octal Character nnn

Using Macros

26 PTC MKS Toolkit

If the prefix and suffix strings themselves consist of a list of tokens separated
by blanks, the resulting expansion provides the cross product of both lists.
Consider the following example using a different value for the TEST macro.

TEST = a b c
$(TEST:^"1 2 3")

expands to
1a 1b 1c 2a 2b 2c 3a 3b 3c

and
$(TEST:+"1 2 3")

expands to
a1 b1 c1 a2 b2 c2 a3 b3 c3

If you combine these two references
$(TEST:^"1 2 3":+"1 2 3")

expands to
1a1 1b1 1c1 2a1 2b1 2c1 3a1 3b1 3c1
1a2 1b2 1c2 2a2 2b2 2c2 3a2 3b2 3c2
1a3 1b3 1c3 2a3 2b3 2c3 3a3 3b3 3c3

Using MKS Make 27

6Controlling MKS Make

Previous chapters have covered a few ways to control the way MKS Make
proceeds when rebuilding a file. To really control its behavior, you need to
understand how to use attributes, special targets, and special macros.

For a complete technical
description, see the make
reference page in the online PTC
MKS Toolkit Utilities Reference.

This chapter introduces you to these concepts and describes some commonly
used examples.

Attributes
Attributes represent qualities that you can attach to targets. When make
updates a target, it triggers any attributes associated with that target.

You can assign attributes to a single target, a group of targets, or to all targets
in a makefile. You can use several forms when including attributes in your
makefiles. Both of the following examples assign the attributes specified in
attribute_list to each of the targets.

targets attribute_list : prerequisites
attribute_list : targets

You can also write a rule with an attribute_list on the left side, and with no
targets on the right side.

attribute_list :

This applies all attributes in the list to every target in the makefile.
Traditional versions of make may let you do this with .IGNORE attribute, but
not with any other attribute.

The following table describes a number of commonly used attributes.

Controlling MKS Make

28 PTC MKS Toolkit

For a complete list, see the make
reference page in the online PTC
MKS Toolkit Utilities Reference.

You can use any attribute with any target (including some special targets). If
you specify an attribute that cannot be used with a particular special target,
MKS Make issues a warning and ignores the attribute. Some combinations
serve no useful purpose (for example, .INCLUDE with .PRECIOUS). You
might find other combinations quite useful.

Special Target Directives
Special target directives, or simply special targets, appear in the target
position of rules, but are not really targets. They act as keywords that
provide directives to control they way MKS Make functions. A rule with a
special target may not have any other targets (normal or special); however,

Attribute Description

.EPILOG Inserts shell epilog code when executing a group recipe
associated with any target having this attribute set.

.IGNORE Ignores any errors encountered when trying to make a
target.

.PRECIOUS Does not remove this target under any circumstances. Any
automatically inferred prerequisite inherits this attribute. By
default, MKS Make removes intermediate targets that did
not exist before it began execution.

.PROLOG Inserts shell prolog code when executing a group recipe
associated with any target having this attribute set.

.SETDIR Changes current working directory to pathname when
making associated targets. You use this attribute with the
following syntax:

.SETDIR=pathname

If pathname contains any colons, you must quote the entire
attribute string, not just the path name.

While .SETDIR might be necessary to work with primitive
commands that do not understand directories, you may
find it awkward and troublesome. You should use
the.SOURCE special target directive described in the next
section, “Special Target Directives”.

.SILENT Does not echo the recipe line, and does not issue any
warnings when making a target with this attribute. This is
equivalent to placing the @ command prefix before every
recipe line in the rule.

Special Target Directives

Using MKS Make 29

you can assign attributes to special targets. Some combinations serve no
purpose, but others are useful (for example, combining the .IGNORE
attribute with the .INCLUDE special target, as shown in the previous
section).

The following table describes a number of commonly used special target
directives.

For a complete list, see the make
reference page in the online PTC
MKS Toolkit Utilities Reference.

Target
Directive

Description

.EXPORT Treats all the prerequisites associated with this target
as macro names. MKS Make then exports these
macros and their values to the environment as
environment variables, at the point in the makefile
where it reads the rule. The following example builds a
source directory macro from the HOME macro, and then
exports that value to the user’s environment.

SRCDIR=$HOME/proj/src
.EXPORT : SRCDIR
exports SRCDIR to the environment

MKS Make ignores any attributes associated with this
target. It exports the specified value to the environment
when it reads the rule, but does not execute any
commands until it finishes reading the entire makefile.
This means that if you .EXPORT a value more than
once in a makefile, only the last value affects executed
commands.

.IMPORT Make searches in the environment for prerequisite
names specified for this target and defines them as
macros with their value taken from the environment. If
the prerequisite .EVERYTHING is given, make reads in
the entire environment.

Controlling MKS Make

30 PTC MKS Toolkit

.INCLUDE Process one or more additional makefiles, as if their
contents had been inserted at this point. MKS Make
behaves as if the contents of the additional makefile
were inserted after the line where it finds this special
target. You specify these extra makefiles as
prerequisites to the .INCLUDE special target. If the
prerequisite list contains more than one file, they are
read from left to right. The following example tells
MKS Make to look for an additional set of default rules
in the users personal project directory:

.INCLUDE : $HOME/proj/startup.mk

 make uses the following rules to search for extra
makefiles:

 If a relative file name is enclosed in quotes, or is
not enclosed with angle brackets (< and >), look in
the current directory. If the file is not present, look
in each directory specified by the .INCLUDEDIRS
special target.

 If a relative name is enclosed with angle brackets
(< and >), search only in the directories specified
by the .INCLUDEDIRS special target.

 If an absolute path name is given, look for that file
and ignore the list associated with the
.INCLUDEDIRS special target. An absolute path
name could be any one of

/subs.mk
/src/objs.mk
c:/makefile

 If MKS Make cannot find a file, it normally issues
an error message and terminates; however, if you
have associated the .IGNORE attribute with this
special target, it just ignores the missing file error.
The .IGNORE attribute is the only one that serves
a meaningful purpose when associated with
.INCLUDE.

For compatibility with MKS Make on UNIX System V,
the following two lines produce equivalent results.

include file #at beginning of a line
.INCLUDE: file

Target
Directive

Description

Special Target Directives

Using MKS Make 31

.INCLUDEDIRS Specifies a list of prerequisites that define the
directories to search when trying to include a makefile
with the .INCLUDE special target. The following
example looks for .INCLUDE files in a central admin
directory, then in a central source directory, then in a
personal source directory.

.INCLUDEDIRS : /etc /rd/src $HOME/
proj

.POSIX Process the makefile as specified in the POSIX.2
standard. If present, this special target must appear on
the first non-comment line in the makefile. This target
may have no associated prerequisites or recipes. Use
this when you need to ensure portability to POSIX -
platforms.

Using this special target has the following effects:

 Causes MKS Make to always use a separate
instance of the shell to execute each recipe line,
instead of trying to run the commands directly.

 Disables any brace expansion, and ignores any
instance of the .BRACEEXPAND special target. For
more information about the deprecated
.BRACEEXPAND special target, see the man page
for the make command.

 Disables metarule inferencing.

 Disables conditionals.

 Disables the use of dynamic prerequisites.

 Disables the use of group recipes.

 Restricts library prerequisites to explicitly named
members. For more information, see the
description of the .NOAUTODEPEND special target
in the online make reference page.

 Checks only the archive when checking the time
stamp on a library module; it does not check for an
object file.

Prevents make from checking for the string $(MAKE)
when you specify the -n option on the command line.

Target
Directive

Description

Controlling MKS Make

32 PTC MKS Toolkit

Special Macros
Special macros usually behave like macros, except they can hold special
kinds of information. MKS Make supports two kinds of special macros;
control macros and runtime macros.

Control macros control MKS Make’s behavior. A control macro having the
same function as an attribute, also has the same name.

.SOURCE Check the list of directories, defined by the associated
prerequisite list, when trying to locate a target file
name. The following example checks a user’s personal
source directory first, and then a central one.

.SOURCE : $HOME/proj/src /rd/src

For more information, see “How Make Finds Files” on
page 38.

.SOURCE.x When trying to locate a file with a name ending in the
suffix .x, search first in the list of directories defined by
the associated prerequisite list. The following example
directs make to look in two different sets of directories
for source and object file targets.

.SOURCE$O : $HOME/proj/object /rd/
object
.SOURCE.c : $HOME/proj/src /rd/src

.SUFFIXES When inferring a rule using suffix rules, the list of valid
suffixes is defined by this target’s associated
prerequisite list. If you specify the special target more
than once, MKS Make adds each list of suffixes to a
single list, in the order they appear. The following
example specifies four valid suffixes for use with suffix
rules.

.SUFFIXES : y .c $O $E

To clear the list, specify this special target with an
empty prerequisite list. The .SUFFIXES special target
has no effect on metarule inferencing.

For additional information, see “Suffix Rules” on
page 48.

Target
Directive

Description

Special Macros

Using MKS Make 33

MKS Make defines the runtime macros during the process of making targets.
Runtime macros usually only serve a useful purpose within recipes; they can
expand to contain the name of prerequisites or targets within recipes.
Dynamic prerequisite macros (a special type of runtime macro), however,
serve a useful function when used in prerequisite lists; they can refer to the
associated target’s name (in full, or in part).

Control Macros MKS Make groups control macros into two sets: string-valued macros and
attribute macros.

MKS Make automatically creates internally defined macros. For example,
you can use $(PWD) to expand to the name of the present working directory.

The following table describes some of the most useful string valued macros.
For a complete list, see the make reference page.

Macro Description

DIRSEPSTR Defined internally, provides the characters that you can
use to separate components in a path name.

On UNIX and POSIX systems, this macro simply contains
the slash character (/).

On Windows 95/NT, and OS/2 systems, the startup.mk
file redefines DIRSEPSTR, according to the value you
specify for your SHELL environment variable. If the SHELL
variable is undefined, and COMSPEC is set, then the startup
file redefines DIRSEPSTR to contain a backslash, a
forward slash, and a colon (\/:). If you run MKS Make
with -r (so startup.mk is not read), or if SHELL is
defined, or if both SHELL and COMSPEC are undefined,
then the DIRSEPSTR special macro contains a string
consisting of forward slash, a backslash, and a colon (/
\:). If MKS Make finds it necessary to make a path name,
it uses the first character of DIRSEPSTR to separate path
name components.

NULL Defined internally, expands to an empty string. Use this for
comparisons in conditional expressions, and in
constructing metarules without ambiguity.

For more information, see “Using Inference Rules” on
page 43.

OS Defined internally, expands to the name of the operating
system.

OSVERSION Defined internally, expands to a string giving the major
version of your current operating system.

Controlling MKS Make

34 PTC MKS Toolkit

Attribute
Macros

The attribute macros let you turn global attributes on and off. You use the
macros by assigning them a value. If you assign a NULL value to the macro,
make turns off the associated attribute. If you assign a non-NULL value to
the macro, MKS Make turns on the associated attribute and gives all targets
that attribute.

For more information, see
“Attributes” on page 27.

The following macros correspond to attributes of the same name:

 .EPILOG

 .PRECIOUS

 .PROLOG

 .SILENT

OSRELEASE Defined internally, expands to a string giving the release
number of your current operating system.

PWD Defined internally, expands to the full path name of the
present working directory (that is, the directory that
MKS Make considers the current directory).

SHELL Set by the default rules and may be changed by you,
expands to the full path to the executable image used as
the shell (command interpreter) when processing single-
line recipes. You must define this macro if you use recipes
that require execution by a shell.

The default rules assign a value to this macro by
inspecting the value of the SHELL environment variable. If
this variable has no value, MKS Make gives it the value of
the COMSPEC environment variable.

SWITCHAR Defined internally, expands to the switch character
currently used to mark command-line options.

Macro Description

Special Macros

Using MKS Make 35

Runtime
Macros

MKS Make expands runtime macros when it carries out the recipes that
contain them. Except for dynamic prerequisite macros, runtime macros do
not produce useful values if placed outside recipes. The following table
describes the expansions for the runtime macros.

Macro Description

$@ The full name of the target, when building a normal target.
When building a library, it expands to the name of the archive
library (for example, if you specify the target as
mylib(member), $@ expands to mylib).

$% Also the full name of the target, when building a normal target.
When building a library, it expands to the name of the archive
member. With a target of mylib(member), $% expands to
member.

$* The target name, with no suffix. This macro produces the same
value as $(%:db).

$> The name of the library, if the current target is a library member.
With a target of mylib(member), $> produces the string
mylib.

$^ The list of prerequisites given in the current rule (that is, the rule
associated with the recipe that MKS Make is executing).

$& The list of all prerequisites in all rules that apply to the current
target. In :: rules, $& produces the same strings as $^.

$? The list of all prerequisites in all rules associated with the
current target, which are newer than that target or which need
to be created. However, in double colon rules (rules with the ::
rule operator) this macro produces the same string as the $<
macro.

$< Similar to $?, except it produces only those prerequisites that
prompt the execution of the current rule (not all changed
prerequisites associated with a single target). In normal rules,
the expansions contains the list of all changed prerequisites in
the current rule. In inference rules, however, it always contains
the single prerequisite of the executing rule. In rules using the
:! operator, this macro produces the current changed
prerequisite. For more information on rule operators, see the
man page for the make command.

$$ Produces a single dollar sign ($).

Controlling MKS Make

36 PTC MKS Toolkit

Examples

The following examples help make the use of runtime macros a little more
clear. This first example begins with a simple pair of rules (to ensure the
portability of this example across platforms, it uses the predefined macro, O,
to represent the suffix string your system uses for object files).

a$O : a.c
a$O : b.h c.h

recipe for making a’s object file

Assuming that a.c and c.h have recently changed, and that b.h has not
changed since the last time you built a$O, when MKS Make executes the
recipe for making a$O, the runtime macros expand to the following values:

Note that MKS Make would further expand the $@ macro’s expansion, to
produce the value for the O macro.

Next, here is an example of a library target.
mylib$A(mem1$O) :

recipe

For more information on using
libraries, see “Making Libraries”
on page 57.

When MKS Make rebuilds mylib$A, the appropriate runtime macros would
produce the following values:

$@ a$O

$% a$O

$* a

$>

$^ b.h c.h

$& a.c b.h
c.h

$? a.c c.h

$< c.h

$@ mylib$A

$% mem1$O

$* mem1

Special Macros

Using MKS Make 37

Dynamic Prerequisite Macros

You can use a number of the runtime macros to create dynamic prerequisites.
When MKS Make encounters dynamic prerequisite macros in the
prerequisite list of a rule, it expands them when it attempts to update the
target. Only a few runtime macros produce meaningful results when you use
them as dynamic prerequisite macros.

To construct a dynamic prerequisite macro, you place an additional dollar
sign in front of the runtime macro reference. The following table explains
the use of two runtime macros as dynamic prerequisite macros.

For more information on
dynamic prerequisites, see the
make reference page in the online
PTC MKS Toolkit Utilities
Reference.

You can also use the symbols $$% and $$> to create useful dynamic
prerequisites.

Macro Description

$$@ Expands to the target name. If the target is a library, it produces
the name of the archive library. For example, with the macro

project : $$@.c

when MKS Make attempts to rebuild the object file, it expands
the $$@ dynamic prerequisite to produce the name of the target,
in this case project. You can make this example more useful
when you modify the value of $$@

project$O : $$(@:b).c

This time, you modify the $$@ macro’s value to select the
basename of the object file (and still produce project). The
next example shows a practical use for this macro.

file1 file2 : $$@.c
 $(CC) -c $(CFLAGS) $@.c

You can see that, by using the $$@ dynamic prerequisite macro
in conjunction with the $@ runtime macro, you can compact two
rules into one general one. Without the runtime macros, you
would need a separate rule for each of the two files.

$$* Produces the name of the target, but without the suffix. The
following two rules contain identical prerequisites.

project$O : $$(@:b).c
project$O : $$*.c

Controlling MKS Make

38 PTC MKS Toolkit

How Make Finds Files
Makefiles often specify target names in the shortest manner possible,
relative to the directory that contains the target files. MKS Make possesses
sophisticated techniques to search for the file that corresponds to a target
name in a makefile.

Assume that MKS Make tries to locate a target with a name in the format
pathname.ext, where .ext is the suffix and pathname is the stem portion
(that is, that part which contains the path and the file name). When given an
relative path name, MKS Make uses the following rules to find the file.

1. Look for pathname.ext relative to the current directory, and use it, if
found.

2. Otherwise, if the .SOURCE.ext special target is defined, search each
directory given in its list of prerequisites for pathname.ext. If .ext is a
NULL suffix (that is, pathname.ext is simply pathname) use
.SOURCE.NULL instead. If found, use that file.

3. If .SOURCE is defined, search each directory in its prerequisite list for
pathname.ext. If found, use that file.

4. If still not found and the target is a member of a library, try to find the
target in that library. This same set of rules is used to bind a file to the
library target at an earlier stage of the makefile processing.

5. If still not found, the search fails. MKS Make returns the original name
pathname.ext.

If at any point the search succeeds, MKS Make replaces the name of the
target with the file name it finds, and refers to it by that name internally.

There is potential here for a lot of search operations. The trick is to define
.SOURCE.x special targets with short search lists and leave .SOURCE
undefined, or as short as possible. Initially, MKS Make simply defines
.SOURCE as

.SOURCE : .NULL

In this context, .NULL in the prerequisite list prompts MKS Make to search
the current directory by default.

The search algorithm has the following useful side effect. When MKS Make
searches for a target that is a member of a library, it first searches for the
target as an ordinary file. When a number of library members require
updating, you may find it most efficient to compile all of them first and to
update the library at the end in a single operation. If one of the members
does not compile and MKS Make stops, you can fix the error and run it
again.

How Make Finds Files

Using MKS Make 39

MKS Make does not remake any of the targets it has already generated
object files for, as long as their prerequisite files remain unchanged.

If the target is a library member, MKS Make begins its search for the target
in that library. If it finds the target, it searches for the member using the
search rules. Thus, MKS Make first binds library entry point specifications
to a member file, and then checks that member file to see if it has changed.

If you specify the .SOURCE or .SOURCE.x targets more than once,
MKS Make appends all the prerequisites to one list. However, you can clear
the list of prerequisites by specifying the target with a null prerequisite list.
In addition, you can use MKS Make’s :- rule operator to clear a previously
set list of path names. Thus, the following two examples are equivalent.

.SOURCE :

.SOURCE : /usr/fred /usr/gerry
these two lines are equivalent to the next one
.SOURCE :- /usr/fred /usr/gerry

More generally, the processing of the .SOURCE special targets is identical to
the processing of the .SUFFIXES special targets.

Example: Directory Navigation Within a Makefile

Sometimes you might want to have a recipe run while the directory is set to
something else other than the current directory. The .SETDIR attribute tells
make to change the current directory for the duration of the recipe with the
attribute set. Here’s an example:

all: subdir two
echo not in subdir

pwd
Remember to clean up afterwards by
removing subdir.

subdir:
mkdir subdir

Note: We can't put "subdir" as a prerequisite
for "two" because subdir has to exist before
anything to do with "two" is processed.
two .SETDIR=subdir:

echo in subdir
pwd

Note that .SETDIR does not work with metarules.

Controlling MKS Make

40 PTC MKS Toolkit

Example: Including External Makefiles

Make has facilities for including other makefiles into the current makefile.
Normally, make looks in the current directory for these files. The special
targets, .INCLUDEDIRS and .INCLUDE, can be used to inform make to look
elsewhere for these files.

The following example relates back to the following three makefiles, two of
which are located in the subdirectories 1 and 2.

 The main makefile:
all: one two
.INCLUDEDIRS: 1
.INCLUDE: <1.mak>
.INCLUDE: 2/2.mak

 Makefile 1/1.mak:
one:

echo one

 Makefile 2/2.mak:
two:

echo two

The “.INCLUDEDIRS” line in makefile tells make where it should look for
makefiles not found in the current directory. In effect, subdirectory 1
becomes part of the search path for makefiles. The “.INCLUDE: <1.mak>”
line in makefile asks make to find the file 1.mak; the “<>” indicates to
make that it should not look in the current directory for 1.mak but it should
look elsewhere in the .INCLUDEDIRS list of directories. 1.mak is found in
the subdirectory 1 so make includes it. The “.INCLUDE: 2/2.mak” line
asks make to include the file 2/2.mak.

After the .INCLUDE’s are replaced by the appropriate files, the effective
makefile would look like this:

all: one two
.INCLUDEDIRS: 1

one:
echo one

two:
echo two

Another method of indicating which files should be used as makefiles is to
use the .MAKEFILES special target in the startup.mk file. Consider

.MAKEFILES: $(PWD:f).mk

How Make Finds Files

Using MKS Make 41

This tells make to look in the current directory for the makefile, with the
name of the makefile the same as the current directory name (that is if in
src/make, look for make.mk). Adding dependencies using .MAKEFILES
does not override the standard makefile lookup behavior; it just adds new
file names for make to consider as makefiles.

Example: Creating Prologs and Epilogs

With make, you can formulate recipes so that certain processes always
happen before a recipe is run, or after the recipe has completed. This
capability is controlled with the .PROLOG and .EPILOG attributes, and with
the .GROUPPROLOG and .GROUPEPILOG special targets. Consider the
makefile

all: GroupWithProlog GroupWithEpilog
GroupWithBoth NonGroupRecipe

GroupWithProlog .PROLOG .SILENT:
[

echo In prolog group recipe
echo

]
GroupWithEpilog .EPILOG .SILENT:
[

echo In epilog group recipe
]
GroupWithBoth .PROLOG .EPILOG .SILENT:
[

echo In prolog/epilog group recipe
]
.GROUPPROLOG:

echo Running prolog
.GROUPEPILOG:

echo Running epilog
echo

NonGroupRecipe .PROLOG .EPILOG .SILENT:
echo In non group recipe with .PROLOG and .EPILOG

attributes set

The .GROUPPROLOG special target defines a special recipe that gets run
before a group recipe runs. Only those group recipes that have the .PROLOG
attribute are so affected; all others behave normally. Similarly, the
.GROUPEPILOG special target defines a special recipe that gets run after a
group recipe runs, again, only for those group recipes with the .EPILOG
attribute.

Controlling MKS Make

42 PTC MKS Toolkit

In the previous example, the targets GroupWithProlog and
GroupWithBoth have the .GROUPPROLOG recipe executed before their
recipes run. The targets GroupWithEpilog and GroupWithBoth have the
.GROUPEPILOG recipe executed after their recipes run.

The regular recipe NonGroupRecipe has neither special recipe run, even
considering that it has the .PROLOG and .EPILOG attributes. Prologs and
epilogs only apply to group recipes.

Using MKS Make 43

7Using Inference Rules

Macros present one means for making your makefiles more general.
MKS Make has another feature that can help you construct truly generic
makefiles—inference rules. When you make an inference, you associate a
target with a prerequisite by matching specific files against general patterns
and determining whether the target needs rebuilding.

Inference rules can help you build makefiles to handle general cases. You
can create a single makefile that can check any object file and rebuild it from
its associated source file if it is out of date. MKS Make provides two
different kinds of inference rules: metarules and suffix rules.

Metarules employ a form similar to normal rules; however, they describe
general methods, not specific procedures.

For more information, see
“Suffix Rules” on page 48.

Other versions of make may not recognize the new metarule format
presented here; instead they use a less general form of inference rules called
suffix rules. For compatibility, MKS Make still supports suffix rules.

When you run MKS Make, it searches through the makefile using the
following rules, attempting to find a recipe to rebuild a target. Once a step
succeeds, it skips the subsequent steps.

1. Search all the explicit rules in the makefile for one that matches the
target.

2. Check to see if an appropriate metarule matches the target.

3. Check to see it an appropriate suffix rule matches the target.
For more information on how to
use the .DEFAULT special target,
see the make reference page in
the online PTC MKS Toolkit
Utilities Reference.

4. Check to see if you have defined the .DEFAULT special target. You can
use this special target to specify a recipe that MKS Make should use
when no other rule would apply to a target.

If you have not defined the .DEFAULT special target, and no other rule
matches the target, MKS Make displays an error and stops.

Using Inference Rules

44 PTC MKS Toolkit

Metarules
A metarule states that targets with names that match a pattern depend upon
prerequisites with names that match a pattern. You may specify either
pattern in the rule.

Every metarule has a standard format. MKS Make treats any rule with a %
symbol in the target as a metarule.

target_pref %target_suffix : prereq_prefix%prereq_suffix
recipes

You can omit any of the prefix and suffix strings. If the % symbol appears in
the prerequisite, it stands for whatever string matched the % symbol in the
target.

Note To include more than one prerequisite entry, you should use the :| rule
operator instead of the single colon operator. For more information on this rule
operator, see “Using the :| Rule Operator with Metarules” on page 46.

For example, consider the metarule that matches object file targets with their
source file prerequisites.

%$O : %.c
$(CC) -c $(CFLAGS) $<

The target in the metarule represents any file with an object file extension; in
other words, any object file. The percent symbol represents the base name of
the target; the O macro expands, as usual, to your system’s object file
extension.

The prerequisite represents the source file corresponding to the target.
MKS Make determines the appropriate source file by looking for a file with
the same base name as the target, coupled with the .c source file extension.

The recipe for this rule contains the command to compile the single
prerequisite that matches the target (note the use of the $< special macro
here). MKS Make expands this macro to provide the single inferred
prerequisite, that is, the single prerequisite it was able to match to the target
file.

Metarules

Using MKS Make 45

Here is another example, this time of a makefile employing metarules.
FILES = main myFunc
notice the use of the $E macro representing
the executable file extension
program$E : $(FILES:+$O)

$(CC) $(CFLAGS) -e$@ $&
%$O : %.c

$(CC) -c $(CFLAGS) $<

When MKS Make attempts to rebuild program$E (here the predefined E
macro represents the executable file extension for your system), it checks the
two specified object files to see if they, in turn, require rebuilding.

MKS Make notes that these files end in the object file extension for your
system, by expanding the O macro. Since these files lack a particular rule
that names them as targets, MKS Make subsequently checks for any
matching metarule. The metarule (the second rule in the makefile) does
match the object file names, so it is used to rebuild the object files.

Employing the metarule, MKS Make looks for the object files’ matching
source files (which end in a .c extension), and runs them through the
compiler.

Note the lack of specific reference to any object file in this makefile.
MKS Make infers the appropriate object files by expanding $(FILES:+$O),
and uses the metarule to match object files with their associated source.

Here is another example, one that demonstrates the use of another common
metarule.

% .PRECIOUS : rcs/%$V
-co -q $<

The metarule states that any target (file) depends upon a prerequisite (an
associated archive file) located in an rcs subdirectory. MKS Make matches
any archive file to its associated working file. The recipe line uses the $<
runtime macro to represent the prerequisite matching the target. Notice that
it uses the dash command prefix. MKS Make ignores the failure of the check
out (co) command (as it should, for example, if a revision of the file has
already been checked out).

Also, notice that it uses a macro called V to represent the possible archive file
extension for the archive file. On UNIX-based systems, archive files usually
end with a ,v extension. On PC-based systems, archive files may have
names identical to their associated working files (that is, V would have a null
value). RCS allowed you to change your archive file names; thus you can
change the V macro to match the extension you chose for archive files.

Using Inference Rules

46 PTC MKS Toolkit

A metarule may specify an attribute for a target. The previous example
assigned the .PRECIOUS attribute to the target. Any attribute specified in a
metarule gets inherited by any target that matches that metarule.

For more information on
attributes, see the make reference
page in the online PTC MKS
Toolkit Utilities Reference.

If MKS Make attempts to make a target that has an attribute, it first checks
for a metarule that applies to the target and specifies the given attribute. If no
such metarule exists, it looks for a metarule that does not specify the
attribute. This lets you specify different metarules for targets with different
attributes. MKS Make performs this test for all attributes except .SILENT,
.IGNORE, and .SYMBOL.

Using the :|
Rule Operator
with Metarules

MKS Make supports a rule operator for use specially in metarules that have
more than one entry in the prerequisite list. This operator allows you to write
one metarule as a short form for a number of similar metarules. The :| rule
operator prompts MKS Make to treat each inferred match in the prerequisite
list as an independent metarule.

To understand this more clearly, take another look at the previous example. It
included a metarule that would allow you to check out any working file from
its associated archive. What if you maintain different archive locations for
different kinds of working files? You store some files in local archive
subdirectories and some more general files in a central archive tree.

You would be tempted to compose two metarules to handle the two
particular cases separately, but the following simple example does the trick.

% .PRECIOUS :| rcs/%$V /archive/%$V
-co -q $<

When MKS Make encounters the :| operator, it handles each prerequisite in
the list independently, applying the same recipe to each prerequisite in turn.
Thus, the previous example is identical to these two rules.

% .PRECIOUS : rcs/%$V
-co -q $<

% .PRECIOUS : /archive/%$V
-co -q $<

When MKS Make uses these rules, it first checks to see if an archive
associated with the working file exists in the rcs subdirectory. If no archive
exists there, it attempts to infer a match with an archive file in a central
directory.

Metarules

Using MKS Make 47

Transitive
Closure

With metarules, MKS Make can draw a chain of inferences across files that
may not exist, resulting in the eventual creation of a target. This process is
called transitive closure of inferences. Consider the following example of
two metarules:

%$E : %$O
recipe one

%$O : %.c
recipe two

When you use MKS Make to rebuild an executable called foo$E, it uses the
first metarule to look for the object file, foo$O. If this file does not exist, and
it cannot find an explicit rule that describes the way to create the necessary
object file, MKS Make finds the second metarule, which describes the
general procedure for rebuilding an object file.

MKS Make considers each metarule only once when performing transitive
closure, to avoid an endless loop. If it did not do this, certain rules would
create problems. For example

% : %.c
recipe

If you used this metarule, when using MKS Make with the target foo, it
would first look for the file foo.c. If it could not find this file, it would then
look for foo.c.c, and so on. Because MKS Make uses each metarule only
once, it avoids the endless loop.

MKS Make computes transitive closure once for each metarule, the first
time the pattern matches a target. As metarules match, MKS Make joins the
recipes together, in order leading backwards to the first metarule.

Thus, using the previous example of two metarules, transitive closure
produced the following rule, when foo.exe matched the first metarule (the
one for executables).

%$E : %.c
recipe two
recipe one

If the object file for the executable does not exist, transitive closure allows
MKS Make to infer that it needs to first build the required object file from
source, using this newly generated rule.

When MKS Make finishes the computation for the rule head, it marks that
rule head as transitive closure completed. Since it adds all possible new rules
to the rule set the first time it performs the computation, MKS Make will not
compute transitive closure again; nothing new can be added to the rule set.

Using Inference Rules

48 PTC MKS Toolkit

For more information on this
process, see the make reference
page in the online PTC MKS
Toolkit Utilities Reference.

To understand this process best, you might want to experiment on small
makefiles, using the -v option to the make command. This displays the
behavior in detail: which rules it searches, when it computes transitive
closure, and which rules it adds to the set.

MKS Make follows a particular order when attempting to make inferences.

Suffix Rules
An older portable form of inference rules, suffix rules use the format

typical suffix rule
.suf1.suf2:

recipe

MKS Make matches the suffixes against the suffix of a target when it cannot
locate an explicit rule for that target. Suffix rules, however, are neither as
powerful or as intuitive as metarules.

For example, to express the dependence of object files upon source files, you
would need a suffix rule that looked like

.c$O:
$(CC) -c $(CFLAGS) $<

Compare this with the equivalent metarule.
normal rule
file$O : file.c

$(CC) -c $(CFLAGS) file.c
metarule
%$O : %.c

$(CC) -c $(CFLAGS) $<

You can see that the construction of the suffix rule seems backwards. By
itself, this gives a good reason to avoid suffix rules; you will find makefiles
with suffix rules much more difficult to read.

You can also construct suffix rules with only one suffix. These match any
file ending in that suffix and provide a recipe for making a target with no
suffix from a prerequisite with a given suffix.

single suffix rule
.c :
$(CC) -o$@ $(CFLAGS) $<

Suffix Rules

Using MKS Make 49

For a suffix rule to work, you must list the component suffixes in the
prerequisite list of the .SUFFIXES special target. To turn off suffix rules,
simply use the special target with a null prerequisite list.

.SUFFIXES:

This clears the prerequisites of any previously declared .SUFFIXES special
targets, and prevents make from using any suffix rules when inferring
matches. You determine the order in which MKS Make uses suffix rules by
the order of the prerequisites associated with the .SUFFIXES special target.

The following list describes how MKS Make handles suffix rules with
targets that have suffixes in their names.

 Extract the suffix from the target.

 Check the .SUFFIXES special target’s prerequisite list; if the suffix does
not appear in the list, quit searching.

 If the suffix does appear in the list, look for a double suffix rule that
matches the target suffix.

 If one exists, extract the base name of the target, add on the second
suffix, and look for a file with the resulting name. If such a file exists,
use the recipe from that double suffix rule to rebuild the target. If no
such file exists, look for another double suffix rule that matches the
target suffix.

 If MKS Make cannot find a double suffix rule to construct the name of
an existing file with the new suffix, the inference fails.

The following list describes how MKS Make handles suffix rules with
targets that have no suffix in their name.

 Check the single suffix rules in the order specified by the .SUFFIXES
special target.

 For each single suffix rule, add the suffix to the target name, and check
to see if a file exists with the resulting name. If such a file exists, use
that recipe to rebuild the target.

 If MKS Make cannot find a single suffix rule to construct the name of
an existing file, the inference fails.

Try some experiments on small makefiles, using make with the -v option, to
see suffix rules work.

Note Because MKS Make searches met-rules first, you should specify the -r
option on the command line to disable the default metarules when
experimenting with suffix rules.

Using Inference Rules

50 PTC MKS Toolkit

Using MKS Make 51

8More About Executing
Recipes

To update a target, MKS Make expands and executes a recipe. The
expansion process replaces all macros and text diversions within the recipe,
then either executes the commands directly, or passes them to a shell or
command interpreter, depending on the occurrence of shell metacharacters in
the recipe.

Regular Recipes
When MKS Make calls a regular recipe, it executes each line of the recipe
separately. This means that the effect of some commands may not carry over
from one recipe line to the next.

For example, a change directory request (cd) in a recipe line changes the
current directory only for that recipe line. The next recipe line reverts to the
previous current directory.

The value of the control macro SHELLMETAS determines whether
MKS Make uses a shell to execute a command. If it finds any character in
SHELLMETAS in the expanded recipe line, it passes the command to the shell
for execution; otherwise, it executes the command directly.

Note If the makefile contains the .POSIX special target, MKS Make always
uses the shell to execute recipe lines.

To force the use of a shell, you can add characters from SHELLMETAS to the
recipe line, as in the example

rule 1
the next lines contains shell metacharacters

command_one > file_one
command_two | command_three
…

More About Executing Recipes

52 PTC MKS Toolkit

The value of the control macro SHELL specifies the shell used for execution.
The value of the control macro SHELLFLAGS provides the options that
passed to that shell. The SWITCHAR control macro gives the character used to
mark the beginning of the flags.

Therefore, the command to run the expanded recipe line is
$(SHELL) $(SWITCHAR)$(SHELLFLAGS) expanded_recipe_line

Normally, just before MKS Make invokes a recipe line, it writes the line to
the standard output. If you have set the .SILENT attribute for the current
target or recipe line (using the @ command prefix), the line is not echoed to
the standard output.

Built-In Commands
Since command.com and cmd.exe incorporate some frequently used
commands as built in commands (for example, del, dir, and type), you
cannot execute these commands directly from makefiles. You can, however,
call the command interpreter to execute the instruction. The following
example demonstrates how to delete a file called myfile.txt on Windows
95/98/Me:

command $(SWITCHAR)c del myfile.txt

This invokes a command interpreter (as determined by the value of the
COMSPEC macro) with the c option prefaced by the value of the SWITCHAR
control macro, and passes it the del command with an appropriate argument
(that is, the name of the file you want to delete).

On Windows NT/2000 systems, you would use
cmd /c del myFile.txt

Group Recipes
MKS Make can also handle bundles of commands, or group recipes, by
passing them to the appropriate command interpreter (shell) as a single unit.
Traditional versions of make do not offer this feature.

A group recipe begins with an opening bracket ([) in the first non-white
space position of a line, and ends with a closing bracket (]) in the last non-
white space position of a line. Group recipes do not need a <Tab> character
as the first characters on a line.

Control Macros Used With Group Recipes

Using MKS Make 53

When MKS Make determines that the associated target requires rebuilding,
it passes the entire group recipe in a block to the shell.

A typical group recipe might involve special command constructs, like the
looping constructs of the MKS KornShell. The following example creates a
loop that use the fmt command to format each file in a directory, appending
the formatted material to the book file:

book : chap1.tr chap2.tr chap3.tr
[

>book
for chapFile in $^
do

fmt -j -l 66 $$chapFile >>book
done

]

MKS Make expands the group recipe before passing it to the shell. Thus,
you need to place an extra dollar sign in front of the chapFile variable, to
prevent MKS Make from attempting to expand the variable before it passes
the line to the shell for execution.

You can assign command prefixes to entire group recipes by placing the
command prefix immediately after the initial bracket. The command prefix
then applies to the group recipe exactly as it would for a single recipe line.

Control Macros Used With Group Recipes
When MKS Make processes a group recipe, it writes the recipe to a
temporary file. You specify an appropriate suffix for the temporary file with
the value of the GROUPSUFFIX control macro. The command interpreter that
handles the group recipe must recognize the suffix you specify with the
GROUPSUFFIX control macro.

If you use command.com, you must specify the .bat suffix. If you use
cmd.exe, specify .cmd (although NT also accepts the .bat suffix). If you
use the MKS KornShell, specify .ksh.

You specify the shell MKS Make passes the group recipe to by defining a
value for the GROUPSHELL macro. The value of the GROUPFLAGS macro
determines the flags that are passed to the appropriate shell, along with the
group recipe.

If you have associated the .PROLOG attribute with the target of the rule
containing the group recipe, MKS Make prepends the recipe associated with
the .GROUPPROLOG special target to the front of the group recipe before
passing it to the appropriate shell.

More About Executing Recipes

54 PTC MKS Toolkit

If the group recipe’s target has the .EPILOG attribute, MKS Make appends
the recipe associated with the .GROUPEPILOG special target to the end of the
group recipe before passing it to the shell. You can use these two procedures
to append a common header or trailer to group recipes.

MKS Make echoes group recipes to standard output just like standard
recipes, unless you use the .SILENT attribute with the associated target or
the @ command prefix.

Text Diversions
MKS Make allows you to directly create files from within a recipe. This
feature is an extension to traditional versions of make. The following
example shows the format of a text diversion:

<+ text +>

The specified text can be anything—several lines long if desired. When
MKS Make encounters this construct, it creates a temporary file with a
unique name, expands any macros in the text, and copies the text to the
temporary file. It then executes the recipe with the name of the temporary
file inserted in place of the diversion. When MKS Make finishes processing,
it removes all the temporary files.

Note Use the -v option to the make command to show the names of these
temporary files and leave them around to be examined.

MKS Make places temporary files in the ROOTDIR/tmp directory unless you
have specified a value for the TMPDIR environment variable, in which case,
it places all temporary files in TMPDIR.

All macro references found in the text are expanded in the normal way;
references in the temporary file are replaced by their associated strings.
MKS Make copies all newline characters as they appear in the diversion.

Normally, MKS Make does not copy white space at the beginning of lines
into the temporary file. However, if you put a backslash at the front of a
white space character, it copies all the white space in that line to the
temporary file.

Text Diversions

Using MKS Make 55

For example,
<+

This line does not begin with white space
\ This one does.
+>

As a simple example of text diversion, suppose you redefine the value of the
MAKESTARTUP macro on the command line to point to your personal startup
file (/usr/lindsay/startup.mk). Next, you write a recipe line like

copy <+ using $(MAKESTARTUP) as make startup file
+> startup.msg

MKS Make creates a temporary file containing the text
using /usr/lindsay/startup.mk as make startup file

Since white space is stripped from the beginning of the second line, the
contents of the temporary file end at the newline character that terminates
the first line.

MKS Make gives this temporary file a unique name. Suppose it uses the
name temp.txt. The original recipe line is changed to

copy temp.txt startup.msg

When finished, startup.msg holds the contents of the temporary file.

Here is a more useful example.
OBJECTS=program$O module1$O module2$O
program$E: $(OBJECTS)

link @<+
$(OBJECTS:t"+\n")
$@/noignorecase

$(NULL)
$(LDLIBS)

+>

The tokenizing expression
$(OBJECTS:t"+\n")

adds a + and a newline after each token in the OBJECTS macro. Remember
the runtime macro $@ stands for the name of the target being made. As a
result, the temporary file created from the text diversion has the following
contents (with all the macros expanded, of course).

program$O+
module1$O+
module2$O
program$E/noignorecase
$(LDLIBS)

More About Executing Recipes

56 PTC MKS Toolkit

The link command can easily handle an input file like this. Here’s the
recipe line after MKS Make processes the text diversion.

link @tempfile

All the PTC MKS Toolkit utilities can handle command lines of at least 8192
characters in length.

If you need to use non-PTC MKS Toolkit utilities, text diversions can help
you pass input to a utility such as a linker, while respecting the command-
line length restriction, as in this example:

program$E : $(OBJECTS)
bcc -eprogram$E @<+ $(OBJECTS:t"\n") +>

This example builds program$E from a lengthy list of object files, using the
Borland C++ compiler.

Using MKS Make 57

9Making Libraries

A library is a file containing a collection of object files and a symbol table.
You can explicitly signal MKS Make that a target is a library, by giving the
target the .LIBRARY attribute; however, you do not need to do this.

You can construct rules to handle libraries simply by writing rules in the
following format:

program_name : library_name(member)
library_name :

recipe

MKS Make can automatically determine that the target library_name is a
library. In other rules it interprets member as a prerequisite of the library
target. MKS Make internally associates the library name with the
prerequisites. This lets the file searching mechanism look for the member in
an appropriate library if it cannot be found as an object file.

Note If you specify either the .POSIX or .NOAUTODEPEND special target,
MKS Make does not check for an object file; it always looks in the library
archive.

Using these features, you can write rules like
program$E : mylib$A(mem1$O)

recipe for making program
mylib$A :

recipe for making library
mem1$O : mem1.c

recipe provided by built-in rules

Note that MKS Make startup rules give the A macro and the LIBSUFFIX
macro the appropriate file extension for library files on your system. On
UNIX and Xenix systems this would be .a; under command.com and
cmd.exe, this would be .lib.

Making Libraries

58 PTC MKS Toolkit

If any target or prerequisite has the following format, MKS Make assumes
that entry is a member of a library called name:

name((entry))

MKS Make then searches the library for the entry, determining the
modification time of the member that defines entry, and the name of the
member file. This name then replaces entry, and MKS Make uses it to make
the member file.

Metarules for Library Support
The startup file defines several macros and metarules useful for
manipulating libraries. A gives the standard suffix for a library, and O gives
the standard suffix for an object file.

The AR macro specifies the librarian program. By default, the macro contains
the ar program provided with MKS Make, and ARFLAGS contains the string
-ruv. These flags cause ar to update the library with all the specified
members that have changed since the library was last updated.

For further information, see the
ar reference page in the online
PTC MKS Toolkit Utilities
Reference.

The startup file contains the metarule
%$A .LIBRARY .PRECIOUS :

$(AR) $(ARFLAGS) $@ $?

With this metarule, you need not directly use the ar command in your
makefile. MKS Make automatically rebuilds a library with the appropriate
suffix when any of the prerequisite object modules have changed. As an
example of the effect of this metarule, consider the rule

lib$A .LIBRARY : mod1$O mod2$O mod3$O

MKS Make gives the .LIBRARY attribute to the lib$A target, so the
metarule applies. Using the command.com or cmd.exe command
interpreters, the following command remakes the library from the
appropriate object modules:

make lib.lib

On UNIX and POSIX compliant systems, libraries have the .a suffix, so the
following command is equivalent:

make lib.a

The startup file contains a metarule that MKS Make uses to rebuild
executable files from object files. This metarule adds the value of the macro
LDLIBS as a list of libraries you want make to link with the object files. If

Suffix Rules for Library Support

Using MKS Make 59

you have several programs, all of which depend on the same library, you can
add the name of your library to the definition of LDLIBS and automatically
get it linked when using the metarule.

For example, assume the startup file specifies the following metarule for
your compiler:

%$E : %$O
$(LD) $(LDFLAGS) -o $@ $^ $(LDLIBS)

You can add the following lines to your makefile:
LDLIBS += mylib$A
program$E : mylib$A

For more information on the +=
symbol, see the make reference
page in the online PTC MKS
Toolkit Utilities Reference.

The first line appends mylib$A to the current definition of LDLIBS.

The second line handles the program you want to build using this library
(you could have any number of different program file targets with the same
prerequisite). Because you have not specified a recipe, MKS Make uses the
metarule from the startup file to relink the programs.

Thus, when you want make to rebuild the program file target, MKS Make
remakes the library file mylib$A if required, and then relinks the executable
from the object file with the libraries specified in LDLIBS.

Suffix Rules for Library Support
Suffix rules also have a feature that supports archive library handling. If you
specify a suffix rule with the following form, the rule matches any target
having the .LIBRARY attribute set, regardless of the target’s actual suffix.

.suf.a:
recipe

For example, if mem.obj exists and your makefile contains the rules
.SUFFIXES: .a .obj
.obj.a :

@echo adding $< to library $@

the command
make -r "mylib(mem)"

Making Libraries

60 PTC MKS Toolkit

causes MKS Make to print
adding mem.obj to library mylib

Note The -r option keeps the rules in the startup.mk file from interfering
with the command in this example.

Using MKS Make 61

10Compatibility
Considerations

MKS Make attempts to remain compatible with versions of the make
utility found on UNIX and POSIX compliant systems, while meeting the
needs of different environments such as Windows 95/98, Windows NT, and
OS/2.

This section examines ways in which MKS Make differs from traditional
versions of make. It also discusses techniques to write makefiles that work
on UNIX, Windows 95/98/Me, Windows NT/2000, and OS/2 systems.

Conditionals
Conditionals let you selectively include or exclude parts of a makefile. This
lets you write rules that have different formats for different systems. Note
that traditional implementations of make do not recognize conditionals.
Conditionals are extensions to the POSIX standard.

You construct conditionals with the following format:
.IF expression1
input1
{.ELSIF expression2
input2}
[.ELSE
input3]
.END

You may have any number of .ELSIF expressions, but only one .ELSE

expression.

When MKS Make encounters a conditional construct, it begins by
evaluating expression1 (associated with the .IF). If the value of expression1
is true, MKS Make processes the first input block (input1) and ignores all
subsequent input blocks until the .END.

Compatibility Considerations

62 PTC MKS Toolkit

If the value of expression1 is false, MKS Make ignores the first input block
and tests expression2 (associated with the .ELSIF). If expression2 is true,
the second input block (input2) is processed, and all subsequent input blocks
until the .END are ignored.

If the value of expression2 is false, MKS Make ignores the first two input
blocks and automatically process the third input block (associated with the
.ELSE).

When MKS Make evaluates expressions, it accepts an expression with one
of the following forms:

text
text1 == text2
text1 != text2

The first entry is false if text is null; otherwise, it is true. The value of the
second entry is true if text1 and text2 are equal. The last entry resolves to
true if text1 and text2 are not equal.

The .IF, .ELSE, .ELSIF, and .END keywords must begin in the first
column of an input line (that is, with no leading white space).

Although you may be used to indenting material inside IF/ELSE constructs,
you must not use <Tab>s to indent text inside conditional blocks (except for
recipe lines, which are always indented with a <Tab>).

Text in a conditional block should have the same form that you would use
outside the block. You may omit the .ELSE and .ELSIF conditional
operators. This would produce a conditional block that MKS Make would
process if the .IF expression were true, and completely ignore if that
expression were false.

This example shows the concept behind the O macro.
.IF $(OS) == NT
O = .obj
.ELSE
O = .o
.END

This begins by checking the predefined value of the OS macro that identifies
your operating system. If the macro expands to NT, MKS Make assigns the
value .obj to the O macro; otherwise, the macro receives the value .o.

Conditionals

Using MKS Make 63

You can use conditionals to prepare a makefile that runs on Windows 95/98/
Me, Windows NT/2000, OS/2, and UNIX systems. You may find it simplest
to check the value of the macro OS (defined in the built in rules). You can
then use conditionals like

.IF $(OS) == NT
NT style input
.ELSE
UNIX style input
.END

With care, you can produce a makefile that works under more than one
operating system.

.IF $(OS) == NT
E=.exe #suffix for executable programs
O=.obj #suffix for object files
S=.asm #suffix for assembler source
A=.lib #suffix for libraries
F=.for #suffix for fortran source
V= #suffix for RCS archives
.ELSE
E=
O=.o
S=.s
A=.a
F=.f
V=,v
.END
LIBSUFFIX=$A

These macro definitions specify suffixes used on UNIX systems. You can
then use a suffix macro like

%$O : %.c
$(CC) $(CFLAGS) $^

It expands to .o on UNIX and POSIX compliant systems.

Note The default startup rules for MKS Make already provide most of these
definitions with values appropriate to your system.

Compatibility Considerations

64 PTC MKS Toolkit

Other Makes
Several other versions of the make utility exist for Windows 95/98/Me,
Windows NT/2000, and OS/2. The following sections examine some
popular make utilities and how they differ from MKS Make.

Borland Make The Borland C++ packages from Inprise Corporation comes with their own
version of make. Here are some of the ways in which the Borland Make
differs from MKS Make:

 Borland Make does not support the general metarule format of inference
rules, only the suffix rule format.

 Borland Make does not support multiple command processors (for
example, the MKS KornShell); it uses only the native command
processor.

 Borland Make does not have general macro modifiers (such as :d and
:f).

 The directives of Borland Make take the form !word, where word is the
directive name. The set of directives includes conditionals, include
facilities (similar to .INCLUDE), and a facility for undefining macros.
No other directives are supported. The format of these facilities is not
compatible with any UNIX or POSIX compliant version of make.

 Borland Make has no facilities for handling libraries or RCS files. It
does not have group recipes or special rule operators, and lacks most of
the special macros and special targets supported by MKS Make.

 Borland Make lets you specify a number and compare it to the return
status of a command in a recipe line. If the return status exceeds this
number, Borland Make stops the make process, saying that an error was
detected.

MKS Make lets you use the minus sign to ignore errors entirely. To compare
a specific exit value, use the MKS KornShell as your SHELL and write a
group recipe like

[
command to be tested
if [$? != 5]

echo "diagnostic"
exit 1

fi
exit 0

]

Other Makes

Using MKS Make 65

If you have a makefile for Borland Make that you want to convert for use
with MKS Make, you need to change all the directives from the !word
format into the MKS Make equivalent.

Microsoft Make Microsoft Visual Studio comes with a limited version of make, called
nmake. Here are some of the differences between nmake and MKS Make:

 nmake does not support the general metarule format of inference rules;
it only supports the suffix rule format.

 nmake does not support multiple command interpreters; it uses only the
native command processor.

 nmake has no facilities for handling libraries or RCS archives. It does
not have group recipes, and lacks most of the special macros and special
targets supported by MKS Make.

 The set of special macros recognized by nmake is much smaller. It uses
$** to represent the same thing as the $& runtime macro in MKS Make
(that is, the complete list of prerequisites for the current target).

Because nmake operates at such a simple level, any makefile that works with
nmake works with MKS Make by simply changing the $** symbols to $&
runtime macros.

Note Naturally, you must use the MKS Make command-line options instead of
those for nmake.

BSD UNIX Make The following is a list of the notable differences between MKS Make and the
4.2/4.3 BSD UNIX make:

 BSD UNIX make supports file name generation for prerequisite names.
Thus, if a directory contains a.h, b.h, and c.h, BSD UNIX make
performs the following expansion:

target: *.h

expands to
target: a.h b.h c.h

MKS Make does not support this type of file name expansion.

 Unlike BSD UNIX make, touching library members causes MKS Make
to search the library for the member name and to update the time stamp
if the member is found (see the description of the -t option in the make
reference page).

Compatibility Considerations

66 PTC MKS Toolkit

 MKS Make does not support the BSD UNIX VPATH variable. A similar
and more powerful facility is provided through the .SOURCE special
target.

System V MAKE The following special features have been implemented to make MKS Make
more compatible with System V make:

 You can use the word include at the start of a line instead of the
.INCLUDE special target that is normally understood by MKS Make.

 MKS Make supports the macro modifier expression $(macro:str=sub)
for suffix changes.

 When defining special targets for the suffix rules, the special target .X
is equivalent to .X.NULL.

 MKS Make supports both the
lib(member)

and
lib((entry))

library handling features of System V make.

 The built in rules contain the following definitions for System V make
compatibility:

@B = $(@:b)
@D = $(@:d)
@F = $(@:f)
?B = $(?:b)
?D = $(?:d)
?F = $(?:f)
B = $(:b)
D = $(:d)
F = $(:f)
<B = $(<:b)
<D = $(<:d)
<F = $(<:f)

This means that System V make constructs like $(@F) work as
expected.

Using MKS Make 67

11Using the Generic CC
Interface

The command-line syntax of different C compilers varies widely. Under
Windows 95/98/Me, Windows NT/2000, and OS/2, some compilers use a
dash to mark options, others a slash, while some accept both characters. In
addition, each compiler usually requires that command-line arguments be
specified in a different order. On UNIX and POSIX compliant systems, there
is a greater degree of uniformity, but there are still differences from one
system to the next.

Because of this diversity, it is difficult to write makefiles that apply to
several compilers and/or systems. The following example is typical, but
even this format is not universal. In particular, the -c argument may not have
the same meaning to different compilers or may not be allowed in the
position shown.

$(CC) -c $(CFLAGS) files

You can find similar differences in the various available linkers and library
editors. Their command lines may have different formats and different sets
of options.

To make it easier for you to write universal makefiles, MKS Make comes
with a generic interface to the C compilers and linkers on the systems where
MKS Make is available. The interface is called cc. However, this interface
is not the default; you must edit your default rules file to call cc.
Programmers developing software on several machines find cc useful; you
may never need it if you do not intend to port your makefiles to other
machines.

For a description of the
command-line format, see the cc
reference page in the online PTC
MKS Toolkit Utilities Reference.

You always call cc with the same command-line format, regardless of the
compiler you want to invoke. You specify command-line arguments in a
universal format. It is then up to cc to rearrange and convert these arguments
(if necessary) to the form required by your chosen compiler or linker and to
invoke the compiler/linker as necessary.

Using the Generic CC Interface

68 PTC MKS Toolkit

Compilation Configuration Files
The cc command employs a compilation configuration file. The
configuration file instructs cc on how to convert generic command-line
arguments into the format required by a specific compiler or linker.

MKS Make comes with appropriate compilation configuration files for the
popular C compilers and linkers on your system. The installation procedure
takes care of setting up the configuration files. Under Windows 95/98/Me
and Windows NT/2000, MKS Make stores the configuration file for cc in
$ROOTDIR/etc/compiler.ccg. On UNIX-based systems, the
configuration file is /etc/compiler.ccg. Alternatively, you can set the
CCG environment variable to point to another configuration file.

The reference page for cc provides information on writing your own
configuration files, if you want to use an unsupported compiler or linker.
Certainly, the best way to start is copy and modify one of the provided
configuration files.

Using CC
The cc command is installed in the same directory as the make command. If
this directory is in your search rules, you can call the command by using the
name cc.

The supplied default rules file defines the CC macro to refer to your favorite
C compiler. For example, if you use the Borland C compiler, it would
contain

CC = bcc
LD = bcc

To use CC, you would edit your default rules file to
CC = cc
LD = cc

From this point on $(CC) and $(LD) invoke cc instead of your chosen
compiler or linker. Since the installation process sets up appropriate
configuration files, cc converts its generic command line to the format
required by your chosen compiler and linker before invoking that compiler
or linker.

Generic Command-line Format

Using MKS Make 69

Generic Command-line Format
The cc command uses the following generic command-line format for
compilation:

cc -c [options] file…

where each option begins with a dash.

The files specified on the command line are the C source files you want
compiled. cc invokes your chosen compiler to compile each source file.

As source files are compiled, cc strips the name of the source file of its .c
suffix and adds an appropriate suffix for object files. If you do not specify
the -c (compile-only) option, cc subsequently passes all these files—as well
as any other object and library files named on the command line—to your
linker.

You specify the output executable with the option
-o executable

To use cc for linking, use the following generic command-line format:
cc [options] -o executable_file object_file…

Examples of Use
Here is an excerpt from a startup file that uses the generic cc interface.

CC = cc
LD = cc
%$E : %$O

$(LD) $(LDFLAGS) $(CFLAGS) -o $@ $^ $(LDLIB)
%$O : %.c

$(CC) -c $(CFLAGS) $^

The metarules describe how to link an executable file from object files and
how to compile an object file from a source file. The command-line format is
independent of the compiler and/or linker being used. You can use the
CFLAGS macro to give options that are specific to your chosen compiler. The
LDFLAGS macro gives options that are specific to your chosen linker.

Using the Generic CC Interface

70 PTC MKS Toolkit

Using MKS Make 71

12Problem Solving

This chapter gives additional examples of using MKS Make.

Without a Makefile
Assume the file prog.c contains the C source code that should be compiled
to make prog.exe. No makefile is necessary; simply type

make prog.exe

MKS Make does everything using default rules, which specify how a .exe
can be built from a .c file.

Simple Makefile
Assume a program is built from the C source code in the files a.c, b.c, and
c.c. Two of these files #include definitions from hdr.h, as shown.

MOD = a b c
OBJ = $(MOD:+"$O")
program$E : $(OBJ)

$(LD) $(LDFLAGS) -o $@ $<
a$O b$O : hdr.h

MKS Make uses the default rules to create the individual object files and
links them into the final program.

Problem Solving

72 PTC MKS Toolkit

Separate Object Directory
Assume the same situation as the previous, except that object and executable
files are kept in a separate directory named objdir. This example assumes
your C compiler has a -ndirectory flag to place the object file into a specific
directory.

There are two ways to handle this with MKS Make, either with .SOURCE
special targets or with .SETDIR attributes. Using .SOURCE, you set up your
makefile as

MOD = a b c
OBJ = $(MOD:+"$O")
OBJDIR=objdir
.SOURCE$O :- $(OBJDIR)
.SOURCE$E :- $(OBJDIR)
CFLAGS += -n$(OBJDIR)
program$E : $(OBJ)

$(LD) $(LDFLAGS) -o $@ $^
a$O b$O : hdr.h

Users of a file server probably want to explore these possibilities, as they
allow sources to be kept on a networked disk, while object and executables
are built on a (usually faster) local disk.

To do the same using .SETDIR, you give the appropriate files .SETDIR
attributes telling make where the files appear. Note that, even though the
source files are in the current directory, a .SETDIR attribute is required for
them as well. However, since MKS Make now changes to the objdir
directory before compiling, it no longer requires the -ndirectory option.

MOD = a b c
OBJ = $(MOD:+"$0")
OBJDIR=objdir
".SETDIR=$(OBJDIR)" : program$E $(OBJ)
".SETDIR=$(PWD)" : $(MOD:+".c") hdr.h
program$E : $(OBJ)

$(LD) $(LDFLAGS) -o $@ $<
a$O b$O : hdr.h

Using a Library

Using MKS Make 73

MKS Make requires the quotes in the .SETDIR setting, if a device name
with a colon may appear in the directory name.

Note Normally, after MKS Make has run the recipe for a target, it marks the
target as made, and does not remake it, even if another target depends upon it.
When you use the .SETDIR attribute, MKS Make switches to the newly
specified directory every time it encounters the attribute and retests all of the
target’s prerequisites. The result is that it does much more work when you use
.SETDIR than when you use .SOURCE.

Using a Library
Going back to the simple example with the source files a.c, b.c, and c.c,
assume a new file named program.c is required, and you keep the other
objects in an object library. In this case, program.exe depends upon the
library and the file program.obj.

The following example uses the macro A to stand for the library suffix:
MOD = a b c
OBJ = $(MOD:+"$O")
program$E: program$O mylib$A

$(LD) $(LDFLAGS) -o $@ $<
mylib$A : $(OBJ)
a$O b$O : hdr.h

Recursive Makes
When building a large complex project, you can use multiple directories for
separate components of the project. Within each directory, you use a
makefile to control the building of that component of the project. At the top
level, you can use a single makefile, which simply invokes the subdirectory
makefiles in turn, ensuring the entire project is up to date.

Problem Solving

74 PTC MKS Toolkit

Assume a project has the subpackages system and commands, each stored in
a subdirectory of a master directory. Within each system and commands
directories, you keep a makefile to rebuild that subpackage. To ensure the
project is up to date, you must ensure the subpackages are up to date; you
can easily do this with a makefile in the following format, stored in master:

all:
$(MAKE) -c system
$(MAKE) -c commands

For more information on this
option, see the make reference
page in the online PTC MKS
Toolkit Utilities Reference.

The -c option forces MKS Make to switch into the specified directory when
it starts up.

The macro MAKE is defined to contain the current setting of MAKEFLAGS.
MKS Make has a feature whereby if the macro MAKE is used in a recipe line,
then that line is executed, even if the -n option was passed to MKS Make.
This ensures the command

make -n

which sets MAKEFLAGS to -n, recursively runs MKS Make in the
subdirectories named. The only limits to this sort of recursive processing is
the available memory on your machine.

Clean-up
Some software creates work or backup files that do not need to be kept.
Assume the current directory contains such files, identified by the suffixes
$O and .bak. To clean out these files, add the following lines to a makefile:

clean :
-rm -f *.bak *$O

The command
make clean

then gets rid of the files.

Back-up

Using MKS Make 75

Back-up
Assume a makefile defines a macro named SRC giving the base name of the
C source files that make up a program. Also assume from time to time, you
want to back up all recently changed copies to a directory named savedir.
Add the following to the makefile:

backup : $(SRC:+".c") makefile
cp $? savedir
touch backup

With this rule, you can do a backup with the command
make backup

The target backup is a file you create the first time you perform the backup.
Each time you perform it, the touch command sets the change date of
backup to the correct time. In this way, the next time you run the command,
MKS Make only saves files newer than backup.

You can use a similar approach to get printouts of source files that have been
changed.

printchk : $(SRC:+".c")
echo printing $?

PRINT $?
touch printchk

Note that PRINT appears in uppercase above. This avoids a conflict with the
lowercase print command built into the MKS KornShell.

Default Rules
The startup file contains a good example of most of the popular features of
MKS Make. Spend some time looking at this file to get a better
understanding of how various things work. Use the -v flag to get trace
information of what MKS Make is doing at each stage.

Problem Solving

76 PTC MKS Toolkit

Using MKS Make 77

13Limits

The maximum length of a single line in a makefile is 16384 characters.

If you use the MKS KornShell, you can write commands with up to 8192
characters when using make.exe.

You can only nest included makefiles up to a depth of 10. In other words, if a
makefile uses the .INCLUDE special target to include another makefile
(which includes another makefile, and so on), you are allowed a maximum
of 10 nested includes.

MKS Make also allows nesting of conditional expressions up to a limit of 25
nested expressions, as in

.IF

.IF
…
.END
.END

up to a limit of 25 nested expressions.

Limits

78 PTC MKS Toolkit

Using MKS Make 79

Index

Symbols
- 12
.DEFAULT 43
.ELSE 61
.ELSIF 62
.END 62
.EPILOG 28, 34, 41
.EXPORT 29
.GROUPEPILOG 41
.GROUPPROLOG 41, 53
.IGNORE 28, 46
.IMPORT 22
.INCLUDE 30, 40
.INCLUDEDIRS 31, 40
.LIBRARY 57, 59
.NOAUTODEPEND 57
.POSIX 31, 51, 57
.PRECIOUS 28, 34
.PROLOG 28, 34, 41, 53
.SETDIR 28, 72
.SILENT 28, 34, 46, 54
.SOURCE 32, 38, 72, 73
.SOURCE.x 32
.SUFFIXES 49
.SYMBOL 46
@ 12
+ 12
$ 35
$^ 35
$? 35
$@ 35
$* 35
$& 35
$% 35
$> 35
$$ 35

$$@ 37
$$* 37

A
archive

library extensions 18
ARFLAGS 58
at-sign in Make 12
attributes 27–28

in Make 11

B
backslash 10, 54
back-up 75
blank characters 9
Borland C++ 64
Borland Make 64
BSD UNIX Make 65
built-in commands in Make 52
built-in rules in Make 16

C
CC 18, 68–69
cc 67, 68
CFLAGS 18, 69
changing

search order in Make 4
cleaning up

makefiles 74
cmd.exe 10, 52
command prefixes

Make 12
command.com 10, 52
commands

Index

80 PTC MKS Toolkit

cc 68
link 56
make 13
touch 75
which 3

comments in Make 11
compilation configuration files in Make 68
conditionals in Make 61
continuation lines in Make 10
control macros

in Make 33–34
used with group recipes 53

D
dash in Make 12
DEFAULT 43
default rules in Make 16
default startup rules for Make 63
defining

Make macros on the CLI 20
dependency of files in Make 7
directories

master 74
DIRSEPSTR 33
dynamic prerequisite macros 37

E
ELSE 61
ELSIF 62
END 62
environment variables

MAKESTARTUP 16
EPILOG 28, 41
examples

.EPILOG 41

.GROUPEPILOG 41

.GROUPPROLOG 41

.INCLUDE 40

.INCLUDEDIRS 40

.PROLOG 41

.SETDIR 28
cc 69
cleaning up makefiles 74
conditionals in Make 61
continuation lines in Make 10

defining Make macros on the CLI 20
finding files in Make 39
group recipes in Make 53
macro expansion in Make 17
macro naming conventions in Make 19
make 14
makefile 17
makefiles 8
making libraries in Make 57
prefix and suffix modifiers 25
printchk 75
recipes in Make 55
running Make without a makefile 71
run-time macros in Make 36
simple makefile 71
specifying targets on the CLI in Make 13
string substitution 23–24
suffix rules in Make 48
tokenization 24
using a library 73
using a separate object directory in Make 72
using different makefile 14
writing rules in Make 9

executable file extensions 18
expansion 17
EXPORT 29
expressions in Make 62

F
file names containing a colon in Make 10
files

.bat 53

.obj 8, 18, 62
finding files

Make 38–39

G
generic command line format in Make 69
group recipes 52
GROUPEPILOG 41
GROUPFLAGS 53
GROUPPROLOG 41, 53
GROUPSHELL 53
GROUPSUFFIX 53

Index

Using MKS Make 81

I
IGNORE 28, 46
ignoring errors in Make 64
IMPORT 22
INCLUDE 30, 40
INCLUDEDIRS 31, 40
inheriting meta-rules 46

L
LDFLAGS 69
LDLIBS 58
LIBRARY 57
link 56
local default rules in Make 16

M
macro definitions 15
macro expansion in Make 17

modifying 22–26
macro modifiers in Make 23
macro naming conventions in Make 19
MAKE 74
Make

attributes 27–28
back-up 75
built-in commands 52
built-in rules 16
cc 68
changing your search order 4
cleaning up 74
colons in file names 10
command prefixes 12
compilation configuration files 68
conditionals 61
control macros 33–34

used with group recipes 53
default rules 16
default startup rules 63
defining macros on the CLI 20
dependency of files 7
dynamic prerequisite macros 37
finding files 38–39
forms of expressions 62
generic command line format 69
group recipes 52

ignoring errors 64
local default rules 16
macro definitions 15
macro naming conventions 19
makefiles 7, 8
MAKESTARTUP 16
making libraries 57–60
metarules 44–48
metarules for library support 58
missing rules 11
modifying macro expansions 22–26
nesting macros in other macros 20–22
options

-D 15
-f 16
-f file 15
-k 15
-n 15
-u 15

prefix and suffix modifiers 25
problems 69–75
recipes 51–56
recursive makes 73
rules 8, 11
running Make without a makefile 71
run-time macros 35–36
search order 4
special target directives 28–32
specifying targets on the CLI 13
string substitution 23–24
suffix rules 48–49
suffix rules for library support 59
text diversions 54
tokenization 24
transitive closure 47
using a separate object directory 72
using CC 68–69
using different makefile 14
using inference rules 43–49
using macros 17–26
writing rules 9–10

make command 13, 14
makefile 7, 8, 16
MAKEFLAGS 74
MAKESTARTUP 16, 55
making libraries 57–60
metarules 44–48

for library support in Make 58

Index

82 PTC MKS Toolkit

Microsoft Make 65
missing rules in Make 11
modifiers 23

N
nesting macros in other macros 20–22
NOAUTODEPEND 57
NULL 19, 33, 34, 38

O
object file 18
OBJECTS 55
OS 33
OSRELEASE 34
OSVERSION 33

P
PATH 4
Path 5
plus-sign in Make 12
POSIX 18, 31, 51, 57
PRECIOUS 28
prefix and suffix modifiers in Make 25
prerequisites in Make 11
PROLOG 28, 34, 41, 53
PWD 33, 34

R
RCS 45, 64
recipes in Make 11, 51–56
recursive makes 73
rule operator in Make 11
rules in Make 11
run-time macros in Make 35–36

S
search order 4
SETDIR 28, 72

SHELL 34
SHELLFLAGS 52
SHELLMETAS 51
SILENT 28, 34, 46, 54
slash 24
solving problems in Make 69–75
SOURCE 32, 38, 72, 73
SOURCE.x 32
special target directives 28–32

macros and 22
specifying targets on the CLI in Make 13
string substitution 23–24
suffix rules 48–49

for library support in Make 59
SUFFIXES 49
SWITCHAR 34, 52
SYMBOL 46
System V MAKE 66

T
text diversions in Make 54
tokenization 24
touch 75
transitive closure 47

U
UNIX 3, 18, 45, 58
UNIX System V 24
using

different makefile 14
inference rules in Make 43–49
macros in Make 17–26

W
which 3
white space in Make 10
Windows 95 33, 63
Windows NT 33, 63
writing a rule in Make 9–10

