

Build Better Software® 1

Reading the Feed: Creating a Simple RSS Reader
In a previous article, Creating Really Simple RSS From A Database, I described how to use the utilities in MKS Toolkit to
build a dynamic RSS feed that took its content from a simple database. In this article, we'll look at how we can use MKS
Toolkit to build a simple RSS reader that can read that feed and many others. As discussed in that earlier article, there
are two current styles of RSS feeds: 0.9x and 1.0. Fortunately, the structures of these two styles are similar enough that
we can build a single reader to handle both of them.

BREAKING DOWN THE STRUCTURE
Before we can begin writing our reader, we need to understand
the structures of both styles. Figure 1 and Figure 2 show the
basic structures of RSS 0.9x and RSS 1.0 feeds, respectively. As
you can see, both styles use many of the same tags in the same
order. For example, both styles have <title>, <link>, and
<description> tags within the <channel> tag to provide
general feed information and within individual <item> tags to
provide the same information about the items contained in the
feed. In fact, the tags mentioned so far are the only the tags
that we will make use of in our reader. The others that may be
found can be ignored for the moment, as can the additional
information provided in the rdf:about attributes in the RSS 1.0
feed.

Taking another look at these structures, you can see that we can
simply ignore everything before the <channel> tag, then get
the contents of the <title>, <link>, and <description>
tags and display their contents as the feed's general information.

Once that is done, we can simply loop through each <item> tag
and once again, obtain and display the contents of <title>,
<link>, and <description> tags.

Those of you that are familiar with RSS and the file formats of
the feeds are saying “What do you mean ignore all that
information?” Believe me, I hear you. The purpose of this article,
however, is to demonstrate the power and flexibility of the MKS
Toolkit tools and utilities. There are many ‘features’ you could
add to this simple script to enhance what I am going to show
you and that will make use of the additional information that RSS
v1.0 contains. By all means, do so, I would love to see what you
all come up with*.

BUILDING THE SCRIPT
When it comes to writing the actual MKS KornShell script that is
our RSS reader, there are a few other factors to consider.

* Comments are welcome, feel free to use the mks.public.toolkit public newsgroups to discuss your enhancements
and other MKS Toolkit related items.

<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF ...>
 <channel rdf:about="...">
 <title>...</title>
 <link>...</link>
 <description>...</description>
 <items>
 <rdf:Seq>
 <rdf:li resource="...">
 ...
 </rdf:Seq>
 </items>
 </channel>
 <item rdf:about="...">
 <title>...</title>
 <link>...</link>
 <description>...</description>
 </item>
 ...
</rdf:RDF>

Figure 2: Basic Structure of RSS 1.0 Feed

<?xml version="1.0"?>
<rss version="0.92">
 <channel>
 <title>...</title>
 <link>...</link>
 <description>...</description>
 <item>
 <title>...</title>
 <link>...</link>
 <description>...</description>
 </item>
 ...
 </channel>
</rss>

Figure 1: Basic Structure of RSS 0.92 Feed

Build Better Software® 2

First, how is this script going to be used? Because
RSS feeds are always changing, the best approach
is probably to schedule it using the MKS Toolkit
Scheduler to run every 10 minutes or so and let
you know when the feed has changed (that is,
there are new items). To do this, we'll need to
keep a copy of the previous version of the feed for
comparison.

Second, how are the contents of the RSS feed
going to be displayed? Given that the information
we're presenting includes links to Web material,
let's have our script create an HTML file that can
be used as output.

Third, how many feeds should the script access?
To keep things simple, we'll limit the script to
reading a single RSS feed from the MKS Web site;
however, because a single feed reader is not
terribly practical, we'll design our script so that it
can be easily expanded to handle multiple feeds.

With these questions answered, we can move on
to the actual script. The completed
rss_read.ksh script is shown in Figure 3.

Getting The Feed
The first step in the script is to actually go out and
get the RSS feed. To do so, we'll use the MKS
Toolkit web utility. Once we have obtained the
feed, we can compare it to the previous version
and if there are no differences in the feed, we can
exit quietly. Otherwise, the script will continue on
to parse and display the feed. Lines 2-9 are the
section of rss_read.ksh that accomplishes these
tasks.

By using a variable to specify the URL of the RSS
feed, the script can be easily modified to handle
different feeds. Similarly, by using variables to
identify the files which contain the old and new
versions of the feed and basing the names of those
files on the feed's URL, we set the stage for the
script handling multiple feeds. Specifically, lines 3
and 4 create the file names for storing the old and
new versions of the feed by taking the URL and,
using shell variable substitution, replacing any /,
\, or : characters with _ and prefixing it with old_ or new_ as appropriate. This creates a unique pair of file names for
any given URL.

Line 5 retrieves the RSS feed using web and stores it in the file identified by $new_rss_feed. This is the new version of
the feed. Line 6 then compares this new version with the old version of the feed. The MKS Toolkit cmp utility performs
the comparison and because the –s option is specified, returns nothing but an exit status indicating whether or not the
two files are the same. If the two files are the same, the feed has not changed and there is nothing to do but exit the
script.

1 rm -f rss_feed.htm
2 RSS_URL=http://www.mkssoftware.com/rss.asp
3 new_rss_feed=new_${RSS_URL//[\/:\\]/_}
4 old_rss_feed=old_${RSS_URL//[\/:\\]/_}
5 web get $RSS_URL $new_rss_feed
6 if cmp -s $new_rss_feed $old_rss_feed
7 then
8 exit
9 fi
10 msgbox -fq "New RSS Items" "New items in $RSS_URL RSS feed."
11 htsplit -xc $new_rss_feed |
12 awk '
13 /<channel/ {
14 main_title=get_contents("title")
15 main_link=get_contents("link")
16 main_desc=get_contents("description")
17 print "<H1>" main_title "</H1>"
18 print "<P>" main_desc "</P>"
19 print "<BLOCKQUOTE>"
20 }
21 /<items>/,/<\/items>/ {
22 next
23 }
24 /<item/ {
25 title=get_contents("title")
26 link=get_contents("link")
27 desc=get_contents("description")
28 print "<H3>" title "</H3>"
29 print "<P>" desc "</P>"
30 getline
31 while ($0 !~ /<\/item/) {
32 getline
33 }
34 }
35 END {
36 print "</BLOCKQUOTE>"
37 }
38 function get_contents(tag) {
39 getline
40 while ($0 !~ "<"tag) {
41 getline
42 }
43 str=""
44 getline
45 while ($0 !~ "</"tag) {
46 str=str " " $0
47 getline
48 }
49 sub(/^ */,"",str)
50 return str
51 }' >> rss_feed.htm
52 mv $new_rss_feed $old_rss_feed

Figure 3: The rss_read.ksh Script

Build Better Software® 3

If the two files are different (or there is no old version of the feed), the script assumes that the change is due to new
information in the feed. Line 10 uses the msgbox command to announce the arrival of new feeds to the user. When you
click OK, the script continues. This line can be commented out or modified if a less interactive method of user notification
is desired.

Parsing the Feed
Now that we have retrieved the new RSS feed and informed the user that new items are available, we can parse the feed
and generate the HTML code that displays the feed's information.

There are two key components to parsing the feed: the htsplit utility and an awk script. The htsplit utility, provided
in the MKS Toolkit, breaks HTML input (or XML input when the –x option is specified) into tokens. Each token is either a
tag (including attributes) or a single word. In our script, we feed the output generated by the htsplit –x command
into an awk script.

The awk script is really the heart of our RSS reader. This script not only reads and processes the contents of the RSS feed
but it also generates the HTML code to display it. As you may remember, in the Breaking Down the Structure section, we
discussed a general approach to processing the RSS feed that works equally well for both RSS 0.9x and RSS 1.0 feeds.
The awk script simply implements that approach.

Because much of the awk script's processing involves retrieving the contents of RSS tags, the key to the script's inner
workings is the get_contents() function defined in lines 38-51. This function, when passed the name of a tag (for
example, link) uses getline to read through the RSS feed a token at a time (because the input to awk is the output
from htsplit) until it reaches a token which matches <tag where tag is the specified tag name. Once this opening tag
is found, get_contents() continues reading tokens (and now concatenating them in the variable str) until a
corresponding closing tag (</tag) is found and the concatenation ends. The variable str is returned as the contents of
the specified tag.

For example, get_contents(link) reads through the feed until it finds a token matching <link. At which point, it
begins accumulating and concatenating tokens until </link is found. The concatenated tokens are returned as the
contents of the link tag.

As you may have noticed, we leave the closing > off many of the tag names throughout this script. We do this so that we
can match a tag that is specified either with or without attributes. For example, item tags in RSS 0.9x are simply <item>,
whereas in RSS 1.0, they are <item rdf:about="…">. Using <item matches both.

Now that we understand how this key function works, we can look at the rest of the awk script. Lines 13-20 handle what
happens when the <channel> tag is encountered. When this happens, the script uses the get_contents() function to
retrieve the values of the <title>, <link>, and <description> tags and, using the awk print statement, adds the
HTML formatting for this general information about the feed. The <BLOCKQUOTE> tag is also added to the output so that
individual items will be indented under the feed information.

The next part of the script (lines 21-23) basically ignores the <items> tag and anything within it. This tag only appears
in RSS 1.0 feeds and does not provide us with any useful information for our reader. Also, by explicitly ignoring the
<items> and </items> tags, it avoids any possible confusion with <item> and </item>.

Lines 24-33 handles the <item> tag. When the script encounters this tag, the processing is similar to that for the
<channel> tag. It uses get_contents() to retrieve the contents of <title>, <link>, and <description>. It then
uses print to add the appropriate HTML formatting to these values in the output.

Finally, the END section of the awk script simply adds the </BLOCKQUOTE> tag to the output to close the
<BLOCKQUOTE> tag opened earlier.

Once the HTML output has been generated by the awk script, it is appended (using the >> redirection operator) to
rss_read.htm file. As you may or may not have noticed, the rss_read.htm file is deleted in line 1. This ensures that
the awk script will be appending output to an empty file. Why did we do it this way instead of using the > redirection

Build Better Software® 4

operator to replace an existing file rather than append to it? The reason is future expansion. If, in the future, we place a
loop around lines 3-52 to handle multiple RSS feeds, we do not need to change how the output is handled.

Finally, once we have created the HTML file, we rename the $new_rss_feed file to $old_rss_feed, so that the next
time the script is run, we can compare the newly received feed with the one we just processed to see if there are any
new items.

You can now use your browser to view the rss_read.htm file and read the items in the feed, following the links
provided if you want to read the full item.

So there you have it, one full pass through a given RSS feed. In order to make the best use of the rss_read.ksh script,
can now use the MKS Toolkit Scheduler to have the script run every 10 minutes to make sure that you catch new items in
the feed as soon as possible. You can read all about the MKS Toolkit Scheduler from the MKS Toolkit Scheduling Solutions
Guide available from the START menu, MKS Toolkit -> Documentation group.

IS THAT ALL?
As it is currently set up, our RSS reader only reads a single RSS feed which we specified in a variable. In truth, though, it
is rare that you'll only want to read a single feed. One way to extend the reader's usefulness is to let the user specify one
or more URLs to read feeds from on the command line and then use a MKS KornShell for loop to process each URL
individually:

for RSS_URL in $*

With this method, you would include the feeds to be read as part of the command line when you schedule the script.

As an alternative, you could use a file named rss_feeds.lst to specify the feeds to be read. Each line of this file would
contain a URL. In this case, you would modify the loop to be similar to

for RSS_URL in `cat rss_feeds.lst`

Also, when handling multiple feeds, you should only use the comparison between new and old versions to determine
whether to issue a notification of new items. All feeds should be processed completely to ensure that they are included.

You could also change the output produced by changing the HTML tags added to the output to other HTML tags or to
something else altogether.

Try using the MKS Toolkit web utility to post the HTML file produced by this script to a Web site or perhaps use the
mapimail or smtpmail tools to email the results to your inbox.

There are many different enhancements you could add to this script and hopefully many techniques used here that you
can apply to your own scripting solutions.

CONCLUSIONS
So, there you have it: a very simple RSS reader that can be easily expanded to produce more sophisticated results. In
addition, you have learned a few basic techniques about parsing XML files (which is what RSS feeds are) that you can
apply to reading other XML files.

Feel free to comment on this or any other MKS article in the mks.public.toolkit public newsgroup. Suggest your
own enhancements and contribute your scripts to the MKS Toolkit resource kit.

For more information about the MKS Toolkit products please visit http://www.mkssoftware.com and to view the full
reference pages for the commands mentioned in this document visit http://www.mkssoftware.com/docs/cmd_index.asp.

http://www.mkssoftware.com
http://www.mkssoftware.com/docs/cmd_index.asp

