

Build Better Software® 1

A Not So Tangled web
One of the more useful utilities included in MKS Toolkit is the web command. With this single tool, you can retrieve a web
page from a specified web server, put a web page on a server, post information to a form on a web page, and many
other activities. In this article, we'll take a look at just three of these many uses.

URL WATCHING
I think I can safely say that all of us have web pages in our Bookmarks or Favorites folder that we visit regularly just
to see if the content on that page has changed. For example, perhaps you regularly check the home page of you favorite
news or sports site to see if there are any major stories. Wouldn't it be nice if you could convince the companies
responsible for those pages to send you an e-mail telling you
when their pages changed? To some extent, the growing
popularity of RSS (Really Simple Syndication) does this and for
those sites that do publish RSS feeds you can use the tips and
tricks within the article Creating a Simple RSS Reader to gather
that information. RSS is not yet mainstream though and by
using web and other MKS Toolkit utilities, you can create a
script that will read a web page, compare it to the last version
it read, and send you that e-mail if things have been updated.

The technique is similar to the one I used for the RSS reader.
However, as you can see in Figure 1, unlike the RSS reader
which dealt with a single a web page (the RSS feed), our
urlwatch.ksh script uses a text file
(url_watch_list.txt) to store the list of URLS to keep an
eye on.

Using an MKS KornShell for loop, urlwatch.ksh cycles through each site specified in the url_watch_list.txt file.
The script uses the shell's parameter substitution capabilities to replace each : or / in the URL with a _ character and
then prefixing either new_ or old_ to create two file names based on the URL for the site. See Figure 1 lines 3 and 4.
These file names are stored in the variables new_page and old_page, respectively, and are used to store the current
and previous versions of the web page we are interested in.

In lines 5 and 6, the script uses the web utility to retrieve and store the current web page being processed and compares
it to the previous version retrieved. If the two versions of the page are identical, here we use the cmp utility to check for
any differences, nothing is done and urlwatch.ksh moves on to the next URL. If they differ, however, the script uses
the MKS Toolkit smtpmail utility to send an e-mail message letting you know this. For a little more detail on this type of
communication refer to lines 8 and 9 in the script. The echo command in line 8 provides the content for the body of the
mail message while line 9 is the actual smtpmail command where we used nobody@mks.com to stand in for your own
e-mail address. The –s option specifies the subject line for the message. You should note that you may need to specify
additional options for smtpmail to work on your system.

Finally, in line 10, the current version of the web page is renamed so that it will be the version of the page that is
compared the next time this site is checked.

There are two ways that we could make use of this script. First, we could simply run it manually every time we wanted to
check to see if any of the sites listed in the url_watch_list.txt file have changed. While this is still an improvement
over visiting each of the pages in your browser and glancing over each to see if there is anything new, we can do better.
By using the MKS Toolkit Scheduler to run the script at regular intervals (for example, once an hour) and because the
script itself handles e-mailing you when it finds a web page that changed, you do not need to worry about setting up the
scheduler to redirect the script's output.

1 for web_url in $(cat url_watch_list.txt)
2 do
3 new_page=new_${web_url//[\/:\\]/_}
4 old_page=old_${web_url//[\/:\\]/_}
5 web get $web_url $new_page
6 if ! cmp -s $new_page $old_page
7 then
8 echo "Web page: $web_url has changed." |
9 smtpmail -s "$web_url has changed" nobody@mks.com
10 mv $new_page $old_page
11 fi
12 done

Figure 1: The urlwatch.ksh Script

Build Better Software® 2

STUFFING THE BALLOT BOX
The web is full of forms for people to fill out. Whether it is a simple poll about their favorite type of pie, a newspaper
collecting feedback from its readers, or a contest that can win you valuable prizes, web sites everywhere are constantly
looking for your input. For most of these situations you can simply fill out the form and move on; however, in some cases
such as contests that allow multiple entries, you might want to fill the form out over and over again to maximize your
chances. I can think of few more tedious tasks than entering the same information repeatedly. Once again however, the
web utility can come to our rescue with its ability to pass information directly to a form on a web page.

As an example of the sort of thing you might use this for, let's look at the web page for VTech's $1,000,000 Baseball
Giveaway (http://www.vtechbaseballgiveaway.com/ddigital/enter.php). This is a contest where you can win prizes if one
of your entries is drawn and a Toronto Blue Jays player hits a home run. To find out what information needs to be fed to
the web page, you need to look at the HTML source for that page. Specifically, you are looking for the source for the
form to be filled out. Within the <form> tag itself, you are looking for <select> and <input> tags with name=
attributes. The name values given by these attributes identify the fields of the form to be filled out. Looking over the
source for this page reveals that the form to be filled out has the following fields:

 title city phone_business
 name_first province phone_fax
 name_last postal_code email
 street_address phone_home promo

All of these are fairly obvious, with the possible exception of promo which is the name for the check box on the web page
that states whether or not you want to receive additional promotional material from VTech.

For fields defined with <input> tags, any value can be posted. For fields defined with <select>, only one of the values
specified with an <option value="…"> tag can be posted. For example, you could post anything for the city field
and have it be accepted whereas you must use on the one of the specified two-letter provincial abbreviations for the
province field.

So, if I wanted to submit an entry for my friend, Noah Boddy, I could use this web command:

web get
"http://www.vtechbaseballgiveaway.com/ddigital/enter.php?title=Mr.&name_first=Noah&
name_last=Boddy&street_address=100%20Nowhere%20Lane&city=Nowheresville&province=ON&
postal_code=K6V%203J6&phone_home=613-555-1234&phone_business=613-555-
6789&email=nobody@mks.com" filled_in_page.htm

This command posts the information and returns the filled-in web page in a file named filled_in_page.htm. Note
that I used %20 in place of spaces and quoted the URL to ensure that it is not misinterpreted. As an alternative I could
put all of this URL from the ? to the end on a single line in a text file (let's call it vetch_url.txt) and instead issued
the web command:

 web post "http://www.vtechbaseballgiveaway.com/ddigital/enter.php" vtech_url.txt

in either case, this information passed along by web is entered into the contest database. And if I just wanted to submit a
single entry for Noah, that would be that. However, since the contest allows each individual an entry every twenty-four
hours, I can use the MKS Toolkit Scheduler to run either of these commands once per day and thus maximize Noah's
chance to win a prize.

Now, of course, as I write this, the 2004 baseball season is drawing to a close, so the specific contest being used here is
also coming to an end, but like many of the techniques described in these articles, you can apply what is discussed here
to your own situation. In particular, this usage of web can be handy for testing web-based applications that relay upon
form input.

http://www.vtechbaseballgiveaway.com/ddigital/enter.php

Build Better Software® 3

LINK CHECKING
The final application of the web utility that we are going to look at is using the command in checking hyperlinks on a web
site and reporting back any problems found. However, unlike the other uses discussed here, I won't be going into much
detail on how to do so. Why is that? Because MKS already offers a superb, well-documented MKS KornShell script named
weblink.ksh in the MKS Toolkit Resource Kit. The Resource Kit can be downloaded by licensed users of an MKS Toolkit
product free of charge from http://www.mkssoftware.com/reskit and contains many other additional samples of using
MKS Toolkit to create specific or general solutions.

But let's get back to weblink.ksh. This script, which was created by an MKS developer a few years back primarily uses
the web utility not only to retrieve the web pages whose links are being checked but also as the means for checking
whether a given link is valid. Of course, before those links can be checked, they need to be found within the page itself.
To do so, weblink.ksh uses a combination of the MKS Toolkit htsplit and awk utilities to look for and extract the
links needing to be checked. This is all fully explained in the comments found in the weblink.ksh script itself.

Finally, unlike many of my examples in these articles, weblink.ksh is designed to work like a fully functioning MKS
Toolkit utility. It offers error checking and handling, command line option processing, and many other features. Thus,
even if you are not interested in the specific task of link checking, it is worth taking a look at weblink.ksh and the
other scripts in the MKS Toolkit Resource Kit just to see how such techniques can be handled.

CONCLUSIONS
In this article, we have looked at three general uses for the MKS Toolkit web utility. In truth, there are many more.
Essentially, any time you have a task to accomplish which requires retrieving and sending information to a web site, web
should be one of the first tools you look at in crafting your solution.

For more information about the MKS Toolkit products please visit http://www.mkssoftware.com and to view the full
reference pages for the commands mentioned in this document visit http://www.mkssoftware.com/docs/cmd_index.asp.

http://www.mkssoftware.com/reskit
http://www.mkssoftware.com
http://www.mkssoftware.com/docs/cmd_index.asp

