openssl pkcs8

PKCS#8 format private key conversion tool 

openssl command


openssl pkcs8 [-topk8] [-inform PEM|DER] [-outform PEM|DER] [-in filename] [-passin arg] [-out filename] [-passout arg] [-noiter] [-nocrypt] [-nooct] [-embed] [-nsdb] [-v2 alg] [-v1 alg]


The pkcs8 command processes private keys in PKCS#8 format. It can handle both unencrypted PKCS#8 PrivateKeyInfo format and EncryptedPrivateKeyInfo format with a variety of PKCS#5 (v1.5 and v2.0) and PKCS#12 algorithms.



Normally a PKCS#8 private key is expected on input and a traditional format private key will be written. With the -topk8 option the situation is reversed: it reads a traditional format private key and writes a PKCS#8 format key.

-inform DER|PEM 

specifies the input format. If a PKCS#8 format key is expected on input then either a DER or PEM encoded version of a PKCS#8 key will be expected. Otherwise the DER or PEM format of the traditional format private key is used.

-outform DER|PEM 

specifies the output format, the options have the same meaning as the -inform option.

-in filename 

specifies the input file name to read a key from or standard input if this option is not specified. If the key is encrypted a pass phrase will be prompted for.

-passin arg 

specifies the input file password source. For more information about the format of arg, see the PASS PHRASE ARGUMENTS section in the openssl reference page.

-out filename 

specifies the output file name to write a key to or standard output by default. If any encryption options are set then a pass phrase will be prompted for. The output file name should not be the same as the input file name.

-passout arg 

specifies the output file password source. For more information about the format of arg, see the PASS PHRASE ARGUMENTS section in the openssl reference page.


PKCS#8 keys generated or input are normally PKCS#8 EncryptedPrivateKeyInfo structures using an appropriate password based encryption algorithm. With this option an unencrypted PrivateKeyInfo structure is expected or output. This option does not encrypt private keys at all and should only be used when absolutely necessary. Certain software such as some versions of Java code signing software used unencrypted private keys.


generates RSA private keys in a broken format that some software uses. Specifically the private key should be enclosed in a OCTET STRING but some software just includes the structure itself without the surrounding OCTET STRING.


generates DSA keys in a broken format. The DSA parameters are embedded inside the PrivateKey structure. In this form the OCTET STRING contains an ASN1 SEQUENCE consisting of two structures: a SEQUENCE containing the parameters and an ASN1 INTEGER containing the private key.


generates DSA keys in a broken format compatible with Netscape private key databases. The PrivateKey contains a SEQUENCE consisting of the public and private keys respectively.

-v2 alg 

enables the use of PKCS#5 v2.0 algorithms. Normally PKCS#8 private keys are encrypted with the password based encryption algorithm called pbeWithMD5AndDES-CBC this uses 56 bit DES encryption but it was the strongest encryption algorithm supported in PKCS#5 v1.5. Using the -v2 option PKCS#5 v2.0 algorithms are used which can use any encryption algorithm such as 168 bit triple DES or 128 bit RC2 however not many implementations support PKCS#5 v2.0 yet. If you are just using private keys with OpenSSL then this doesn't matter.

The alg argument is the encryption algorithm to use, valid values include des, des3, and rc2. It is recommended that des3 is used.

-v1 alg 

specifies a PKCS#5 v1.5 or PKCS#12 algorithm to use. A complete list of possible algorithms is included below.


The encrypted form of a PEM encode PKCS#8 files uses the following headers and footers:


The unencrypted form uses:


Private keys encrypted using PKCS#5 v2.0 algorithms and high iteration counts are more secure that those encrypted using the traditional SSLeay compatible formats. So if additional security is considered important the keys should be converted.

The default encryption is only 56 bits because this is the encryption that most current implementations of PKCS#8 will support.

Some software may use PKCS#12 password based encryption algorithms with PKCS#8 format private keys: these are handled automatically but there is no option to produce them.

It is possible to write out DER encoded encrypted private keys in PKCS#8 format because the encryption details are included at an ASN1 level whereas the traditional format includes them at a PEM level.

PKCS#5 v1.5 and PKCS#12 algorithms.

Various algorithms can be used with the -v1 command line option, including PKCS#5 v1.5 and PKCS#12. These are described in more detail below.


These algorithms were included in the original PKCS#5 v1.5 specification. They only offer 56 bits of protection since they both use DES.


These algorithms are not mentioned in the original PKCS#5 v1.5 specification but they use the same key derivation algorithm and are supported by some software. They are mentioned in PKCS#5 v2.0. They use either 64 bit RC2 or 56 bit DES.


These algorithms use the PKCS#12 password based encryption algorithm and allow strong encryption algorithms like triple DES or 128 bit RC2 to be used.


Convert a private from traditional to PKCS#5 v2.0 format using triple DES:

openssl pkcs8 -in key.pem -topk8 -v2 des3 -out enckey.pem

Convert a private key to PKCS#8 using a PKCS#5 1.5 compatible algorithm (DES):

openssl pkcs8 -in key.pem -topk8 -out enckey.pem

Convert a private key to PKCS#8 using a PKCS#12 compatible algorithm (3DES):

openssl pkcs8 -in key.pem -topk8 -out enckey.pem -v1 PBE-SHA1-3DES

Read a DER unencrypted PKCS#8 format private key:

openssl pkcs8 -inform DER -nocrypt -in key.der -out key.pem

Convert a private key from any PKCS#8 format to traditional format:

openssl pkcs8 -in pk8.pem -out key.pem


Test vectors from this PKCS#5 v2.0 implementation were posted to the pkcs-tng mailing list using triple DES, DES and RC2 with high iteration counts, several people confirmed that they could decrypt the private keys produced and Therefore it can be assumed that the PKCS#5 v2.0 implementation is reasonably accurate at least as far as these algorithms are concerned.

The format of PKCS#8 DSA (and other) private keys is not well documented: it is hidden away in PKCS#11 v2.01, section 11.9. OpenSSL's default DSA PKCS#8 private key format complies with this standard.


There should be an option that prints out the encryption algorithm in use and other details such as the iteration count.

PKCS#8 using triple DES and PKCS#5 v2.0 should be the default private key format for OpenSSL: for compatibility several of the utilities use the old format at present.


PTC MKS Toolkit for System Administrators
PTC MKS Toolkit for Developers
PTC MKS Toolkit for Interoperability
PTC MKS Toolkit for Professional Developers
PTC MKS Toolkit for Professional Developers 64-Bit Edition
PTC MKS Toolkit for Enterprise Developers
PTC MKS Toolkit for Enterprise Developers 64-Bit Edition


openssl dsa, openssl gendsa, openssl genrsa, openssl rsa

PTC MKS Toolkit 10.2 Documentation Build 28.