
PTC MKS Toolkit
Using the MKS KornShell

PTC Inc.

PTC MKS Toolkit: Using the MKS KornShell

Copyright © 2020 PTC Inc. and/or Its Subsidiary Companies. All Rights
Reserved.

User and training guides and related documentation from PTC Inc. and its subsidiary
companies (collectively "PTC") are subject to the copyright laws of the United States and
other countries and are provided under a license agreement that restricts copying,
disclosure, and use of such documentation. PTC hereby grants to the licensed software
user the right to make copies in printed form of this documentation if provided on
software media, but only for internal/personal use and in accordance with the license
agreement under which the applicable software is licensed. Any copy made shall include
the PTC copyright notice and any other proprietary notice provided by PTC. Training
materials may not be copied without the express written consent of PTC. This
documentation may not be disclosed, transferred, modified, or reduced to any form,
including electronic media, or transmitted or made publicly available by any means
without the prior written consent of PTC and no authorization is granted to make copies
for such purposes. Information described herein is furnished for general information only,
is subject to change without notice, and should not be construed as a warranty or
commitment by PTC. PTC assumes no responsibility or liability for any errors or
inaccuracies that may appear in this document.

The software described in this document is provided under written license agreement,
contains valuable trade secrets and proprietary information, and is protected by the
copyright laws of the United States and other countries. It may not be copied or distributed
in any form or medium, disclosed to third parties, or used in any manner not provided for
in the software licenses agreement except with written prior approval from PTC.

UNAUTHORIZED USE OF SOFTWARE OR ITS DOCUMENTATION CAN RESULT
IN CIVIL DAMAGES AND CRIMINAL PROSECUTION.

PTC regards software piracy as the crime it is, and we view offenders accordingly. We do
not tolerate the piracy of PTC software products, and we pursue (both civilly and
criminally) those who do so using all legal means available, including public and private
surveillance resources. As part of these efforts, PTC uses data monitoring and scouring
technologies to obtain and transmit data on users of illegal copies of our software. This
data collection is not performed on users of legally licensed software from PTC and its

Using the MKS KornShell iii

authorized distributors. If you are using an illegal copy of our software and do not consent
to the collection and transmission of such data (including to the United States), cease
using the illegal version, and contact PTC to obtain a legally licensed copy.

Important Copyright, Trademark, Patent, and Licensing Information: See the About
Box, or copyright notice, of your PTC software.

UNITED STATES GOVERNMENT RIGHTS

PTC software products and software documentation are “commercial items” as that term
is defined at 48 C.F.R. 2.101. Pursuant to Federal Acquisition Regulation (FAR) 12.212
(a)-(b) (Computer Software) (MAY 2014) for civilian agencies or the Defense Federal
Acquisition Regulation Supplement (DFARS) at 227.7202-1(a) (Policy) and 227.7202-3
(a) (Rights in commercial computer software or commercial computer software
documentation) (FEB 2014) for the Department of Defense, PTC software products and
software documentation are provided to the U.S. Government under the PTC commercial
license agreement. Use, duplication or disclosure by the U.S. Government is subject solely
to the terms and conditions set forth in the applicable PTC software license agreement.

PTC Inc., 121 Seaport Blvd, Boston, MA 02210 USA

PTC Inc.
12015 Lee Jackson Memorial Hwy,

Suite 150
Fairfax, Virginia 22033
Phone: +1 703 803-3343

Fax: +1 703 803-3344
E-mail: MKSToolkitInfo@ptc.com

10.3-1000

iv PTC MKS Toolkit

Technical Support
To request technical support, please contact us on the PTC eSupport Portal below. In your request please
include your Service Contract Number (SCN), the name and version number of the product, your serial
number, and the operating system and version/patch level that you are using. Contact PTC Technical
Support at:

Technical Support: http://support.ptc.com/

When reporting problems, please provide a test case and test procedure, if possible. If you are following up
on a previously reported problem, please include the case number in the subject line of your correspondence.

Finally, please give us your e-mail address and telephone number so that we may contact you.

Using the MKS KornShell v

Table of Contents

Technical Support .. iv

1 Introduction...1

2 A Different Shell..3
Slash vs. Backslash...3
Specifying Command Options...4
Missing Commands...4

3 Starting the Shell ..7
The Simple Way ...7
Profile Files..7
Entering the Shell at Login Time ...8
Leaving the Shell ..8

4 Basic Features of the MKS KornShell9
Wild Card Characters..9
Other Special Characters...11
Aliases..11

Aliases in profile.ksh ..12
Double Backslashes..13
Command History ...14
Editing Commands from the History File......................................15

5 Combining Commands ..17
Multiple Commands..17
Pipes...17
Command Substitution ...18
Search Rules..20
The whence Command ...22

6 Shell Scripts..23
Running a Shell Script ...24
A Sample Shell Script ..24
Shell Scripts and Command Interpreters25
Shell Variables ..26
Displaying Shell Variables..27
Calculations with Variables..28

vi PTC MKS Toolkit

Exporting Variables ...29
Variable Attributes...30
Positional Parameters ..32

Quotes in Shell Scripts ...33
Control Structures..34

Testing Conditions..34
The if Conditional ...36
The while Loop ...38
The for Loop ..39
Combining Control Structures..40

Functions ...41
Returning Values from a Function...42

7 Customization...43
Customizing Aliases..43
Turning Off an Alias..44
Prompts ...45
Setting Options...46
The ENV Variable ..47

8 Command Editors...49
Asking for the vi Command Editor...50
Asking for the EMACS Command Editor......................................51
Using a Command Editor ...51

9 Miscellaneous Points ...53
Tilde Expansion..53
Modified Parameter and Variable Expansion54
String Matching Modifiers..56
Special Parameters ...57

10 Graphical Features of the MKS KornShell59
Managing the KornShell ...59

gvar ...59
gset ..60

Desktop Tools ...60
Using Graphical Features in Shell Scripts61

msgbox ...62
start ...64
filebox ...65
dlg ...68
Basic Structure of dlg Shell Scripts...68
dlg Examples ...69

dlg list ..69

Using the MKS KornShell vii

dlg settext..71
dlg enabled ...72
dlg event ...73
dlg gettext ...73
dlg getcursel ...75
dlg winhelp...75
dlg close ..76

bindres ..78
toolbar...79

Index ..81

viii PTC MKS Toolkit

Using the MKS KornShell 1

1Introduction

What happens when you type a command into your computer? If
you are not familiar with the way that computing systems work, you
may only have a vague answer to this question: "The computer does
the command."

The truth is that the commands you type in are read by a program
called a command interpreter. On most systems, there is nothing special
about the command interpreter: it is just another program. Of course,
it is an important program because it's the one that lets you run every
other program... but it is not unique. It is possible to write different
command interpreters that let you type in commands in different
formats.

Once you understand this, you can begin to consider what an ideal
command interpreter would do for you. Certainly, the less typing you
have to do, the better; so an ideal command interpreter would offer
ways to reduce your typing load, especially on repetitive or
frequently-used commands. An ideal command interpreter would
also be adaptable—it could be customized to be particularly good at
the jobs you personally do most often. It should be powerful enough
to handle long and complex command lines, but simple enough that
quick and easy operations really are quick and easy.

The MKS KornShell is just such a command interpreter. On UNIX
systems, all command interpreters are called shells. The heart of these
operating systems is called the kernel; think of a command interpreter
as a shell that is wrapped around the central core. When you use a
UNIX system, what you see is the shell; the kernel is hidden. MKS
admired the capabilities of the KornShell and decided to make it
available to users on other systems.

You will find that the MKS KornShell provides many capabilities that
the standard Windows command interpreters just do not have;
however, standard Windows systems differ from UNIX systems in
many respects, and a small number of the original KornShell

Introduction

2 PTC MKS Toolkit

capabilities cannot be implemented. In addition, you should be aware
that there are occasional conflicts between Windows conventions and
UNIX ones. These are discussed later.

This document introduces all of the basic concepts of the shell and
gives examples of how to use the shell. It’s a good starting point for
anyone who is unfamiliar with sophisticated command interpreters.
If you are already familiar with shells and command interpreters, you
might want to turn directly to the sh reference page for a complete
technical explanation of the shell.

Using the MKS KornShell 3

2A Different Shell

If you are a new user, you may become so confused by the
differences between the Windows and KornShell command
interpreters that you might want to give up. That would be a shame,
because in the long run, you will probably appreciate these
differences and be glad that they are there. Don’t give up!

Most potential problems have already been dealt with in the “Getting
Started” chapter of the PTC MKS Toolkit Product Overview and
Solutions Guide; we’ll reiterate these command interpretation
differences here to alleviate any further misunderstanding. As we go
along, if there are any other subtle differences that might cause
confusion they will be noted in the particular context.

Slash vs. Backslash
Once you have started the MKS KornShell, you can type in most of
the commands that you used before (with command.com or cmd.exe);
however, there is one important difference to remember.

If you are used to standard Windows syntax, you’ve probably been
using the backslash character (\) to separate parts of a path name, as
in

dir1\dir2\file.ext

The MKS KornShell uses slashes instead, as in

dir1/dir2/file.ext

It is very important to remember to use slashes, because the backslash
character has a special meaning to the shell. If you type a backslash
by mistake, the shell will probably not understand your command.
The rest of this tutorial uses slashes in all path names.

A Different Shell

4 PTC MKS Toolkit

If a command absolutely requires backslashes in file names, the
command line that you type into the shell must have two backslashes
wherever you want to use a single backslash. For example, if you
want to read dir\file into a word processor named wrdproc, you
may have to type

wrdproc dir\\file

on the command line. The reason for this is explained in Chapter 4:
“Basic Features of the MKS KornShell” on page 9.

Specifying Command Options
PTC MKS Toolkit commands follow the UNIX convention of using a
hyphen to indicate a command option. For example, for a case-
insensitive search for the string foo in all files in the local directory,
you would enter

ls | grep -i foo

The Windows command interpreters command.com and cmd.exe
normally use a slash (/) to indicate command options. Commands in
the PTC MKS Toolkit only use the slash in path names.

Missing Commands
As you begin trying out various KornShell features, you are going to
discover that many of your favorite PC commands such as dir, del,
and type may not work when you are in the shell. These basic
commands are used so often that the designers of command.com and
cmd.exe used a trick to make them faster to run than normal
commands. Usually, when you type a command, the command
interpreter goes searching for a file that contains the program you
want to run, and this search takes time. To avoid this search time, the
command interpreter designers built the most basic commands
directly into command.com and cmd.exe. When you ask to del a file,
for example, command.com itself deletes the file, without trying to call
another program.

The MKS KornShell does not behave this way. Command names like
del and dir are not special to the shell; the shell goes searching for
program files, the same way it searches for any normal command. In
this case, however, there are no program files, so the operation fails.

Missing Commands

Using the MKS KornShell 5

There are several alternatives to alleviate this problem:

 The best idea is to make use of PTC MKS Toolkit commands
instead of the standard Windows ones: use lc instead of dir, rm
instead of del, more instead of type, and so on. The PTC MKS
Toolkit commands are designed to be consistent with the shell
and to make full use of the shell's abilities. They are also nicer to
use than the standard utilities; for example, the output of lc is
more readable than the output of dir.

 If you still want to use a standard Windows command, you can
make a special call to the native command interpreter to run one
of its built-in operations. For example,

command.com /c del file

calls command.com to run the single command

del file

You can run any normal command.com command by typing

command.com /c

followed by the command you want to run.

For more information, see
“Aliases” on page 11.

 Finally, you can set up an alias inside the shell, so that when you
type dir, or del, or type, the shell does whatever extra work is
needed to perform the operation. This requires a little
preparation before it works, but once you have done the set-up,
you do not have to worry about it again.

This is the approach taken by the standard environ.ksh file
provided with PTC MKS Toolkit, which creates such aliases for
the following commands:

copy del dir erase move path
ren ver verify vol

A Different Shell

6 PTC MKS Toolkit

Using the MKS KornShell 7

3Starting the Shell

This chapter describes several ways to start up the shell. All of these
assume that the MKS KornShell is properly installed on your system.

The Simple Way
The simplest way to start the shell is just to type

sh

and press ENTER. sh is the standard PTC MKS Toolkit name for the
KornShell (on some UNIX systems, the standard name is ksh).

Once you have entered the sh command, the system usually displays

$

Chapter 7: “Customization”
on page 43 shows you how to
personalize your shell
prompt. You can also
customize your prompt from a
dialog box using the gset
command.

This is the shell's standard prompt. It means that the shell is ready for
you to type in a command. The $ prompt is a simple way to know
when you are talking to the shell command interpreter. Other
command interpreters use different prompts. For example, the
standard command.com usually uses

C:\>

Profile Files
As later chapters show, you will often want to define special names
for use while working with the shell (for example, aliases that stand
for specific commands). One simple way to do this is to create a profile
file.

Starting the Shell

8 PTC MKS Toolkit

A profile file named profile.ksh is usually stored under your home
directory. (On UNIX and POSIX-compliant systems, this file is named
.profile.) This file can contain MKS KornShell commands to set up
any options or definitions that you might want to use while working
with the shell.

The command

sh -L

starts the shell and tells it to begin by reading and running your
profile file. Note that the letter L must be in uppercase. The shell
looks for profile.ksh, under the directory indicated by the
environment variable HOME (your home directory). If the variable
HOME is not set, the shell looks for the profile file under the current
directory; therefore, make sure that you are set to the right directory
when you issue the command.

Later sections discuss many kinds of commands that you might want
to put into your profile file.

Entering the Shell at Login Time
For more information, see the
autorun reference page in the
online PTC MKS Toolkit
Utilities Reference.

You can start a KornShell window automatically whenever you log in
by using autorun.ksh. If you use the KornShell often, this option
will save you having to launch the shell every time you start your
computer. autorun.ksh manipulates the Windows Registry Database
to run any program upon bootup or login.

Leaving the Shell
If you have started MKS KornShell by typing sh or using
autorun.ksh, the shell prompts you to enter a command, runs the
command, prompts for another command, and so on. You can keep
on going as long as you want. If you want to stop using the shell, just
type

exit

and press ENTER. You return to whatever command interpreter you
were using before you started the shell. Typing exit terminates the
shell window.

Using the MKS KornShell 9

4Basic Features of the
MKS KornShell

This section examines some of the basic features of the MKS
KornShell. Once you have a grasp on the following concepts,
working efficiently with the KornShell comes much easier.

Wild Card Characters
If you have used other shells or command interpreters you are
probably familiar with the concept of wild card characters. A wild
card is a special character that can be used to save typing inside path
names. For example, a question mark (?) inside a path name can
stand for any other single character.

ls file.?

lists any and all files with names that consist of file. followed by a
single character. This can mean file.a, file.b, file.c, and so on...
whichever of the files currently exist.

You might already be familiar with the use of ? as a wild card
character, since it is also recognized by some standard Windows
commands. There is, however, one important difference: with
standard Windows commands, the question mark stands for any
character except the dot; with the MKS KornShell and other PTC MKS
Toolkit commands, it stands for any character including the dot. This
means that ??? matches a name like a.b when you are using the MKS
KornShell, but not when you are using command.com or cmd.exe.

The asterisk (*) is another wild card character that is recognized by
both the shell and standard Windows software. It stands for any
sequence of zero or more characters.

Basic Features of the MKS KornShell

10 PTC MKS Toolkit

The MKS KornShell has other wild card patterns that cannot be used
with standard Windows software. For example, square brackets
containing one or more characters stand for any one of the contained
characters:

[bch]at

matches bat, cat, or hat.

cp [abc]* a:

copies all files, under the current directory, with names that start with
a, b, or c, followed by any other sequence of zero or more characters.
In other words, it copies all files with names that start with a, b, or c.

You can also specify ranges of characters inside the square brackets,
as in

[a-m]

This matches any character from a through m. Suppose, for example,
that you want to copy the contents of the current directory to floppy
disks, but there is too much to fit on one disk. You might say

cp [a-m]* a:

to copy all files with names beginning with the letters a through m,
then issue the second command

cp [n-z]* a:

to copy the rest.

If the first character inside a bracket construction is an exclamation
mark (!), the construction matches any character that is not inside the
brackets. For example,

cp [!a-m]* a:

copies any file that does not begin with one of the letters in the range
a through m.

Note PTC MKS Toolkit commands all recognize the bracket wild card
constructions, whether you are using the MKS KornShell, command.com, or
cmd.exe.

Other Special Characters

Using the MKS KornShell 11

Other Special Characters
The wild card characters have special meanings to the shell. There are
several other characters that have special meanings

| & ; < > ()
space tab newline $ ` \ "
' # ~ { }

Later sections of this document discuss the special meanings of most
of these characters.

If you type in a command that contains any of these characters, the
shell often assumes that you are using the character in its special
sense. If you do not want to use the special sense of the character, put
a backslash (\) in front of the character. For example,

echo it\'s me

displays

it's me

If you just try

echo it's me

without the backslash, the shell interprets the ’ with its special
meaning. It displays > after you press ENTER and waits for input
instead of returning the usual $. An apostrophe (') without a
backslash is taken to be the start of a string and the shell assumes that
the string keeps going until you type another apostrophe, even if that
goes on for several lines.

The moral is that you must remember to put in backslashes in front of
any special character, unless you know what its special meaning is
and you want that meaning. Since backslash itself is a special
character, you must type two of them whenever you want a single
backslash.

Aliases
Earlier in this document, we discussed making it easier to use
commands like dir and del under the shell. The answer is to set up
an alias for any command that you intend to use frequently.

Basic Features of the MKS KornShell

12 PTC MKS Toolkit

An alias is a personalized name that stands for all or part of a
command. It is created by typing

alias name="string"

in response to the MKS KornShell's usual prompt for input. This is
not a normal command; it is an instruction to the shell itself. It does
not work properly if you try it with command.com or cmd.exe.

As an example of a simple alias, try entering

alias m="more"

(The more command displays the contents of a file on your screen.)
From this point onward, whenever the shell sees a command that
starts with m (followed by a space or tab), the m is replaced with more.
Clearly, this saves you some typing; you can say

m file

to get the effect of

more file

You can also set and display aliases from a dialog box using the gvar
command.

Aliases in
profile.ksh

To set up aliases for basic command.com or cmd.exe commands, use
the following syntax for each command

alias dir="command.com /c dir"

or

alias dir="cmd.exe /c dir"

After you create these aliases, you can use them like the original
commands. If you define an alias as

alias del="command.com /c del"

when the shell sees a command like

del file

it is translated into

command.com /c del file

The best way to set up these aliases is to put the alias commands in
a profile file (profile.ksh). When you start the shell with

sh -L

or when you log in with the sign-on procedure, the shell reads the
aliases from the file and sets them up immediately. That way, you do
not have to type them in every time you start using the shell.

Double Backslashes

Using the MKS KornShell 13

You can redefine an alias. If you issue the command

alias name="string"

and name is already an alias, the shell forgets the old meaning and
uses the new meaning from then on. This means, for example, that
you can redefine an alias that was previously defined in your profile
file.

When the MKS KornShell replaces an alias, it checks to see if the
result is another alias. For example, you might say to yourself, "Why
do I need to type dir for the dir command? I could just set up the
alias d." You could, therefore, type

alias d="dir"

When you type something like

d mydir

the shell replaces d with dir, which the shell in turn replaces with:

"command /c dir"

The shell continues to check for and replace aliases until no aliases
remain or the replacement would result in an infinite loop of alias
expansion.

To display all currently defined and predefined aliases, just type

alias

at the command prompt.

Double Backslashes
Suppose you have set up an alias for dir and are using the MKS
KornShell. Suppose also that you want to find out what is under the
root directory on your current device. You start by typing

dir /

because with the MKS KornShell, you use slashes in path names. You
find that this does not work; your alias for dir is calling command.com
to do the work, and command.com uses backslashes. So you type

dir \

Basic Features of the MKS KornShell

14 PTC MKS Toolkit

That doesn’t work either; the KornShell prompts with > for another
line. Remember that backslash is a special character to the shell. If
you want to use the literal meaning of any special character, you have
to put a backslash in front. In this case, that means typing two
backslashes; therefore, you have to type

dir \\

to run the dir command you want.

This is a general rule when you are using the KornShell: you must
type two backslashes wherever you need one, as in

dir \\dir1\\dir2\\dir3

Command History
The shell records each command that you enter, in a file named
sh_histo under your home directory. This is called the history file. (On
UNIX and POSIX-compliant systems the history file is called
.sh_history.) If you enter the command

history

the shell displays the current contents of your history file. Notice that
each command is numbered.

You can re-run any of the commands in your history file by typing r,
followed by a space, followed by the number of the command you
want to run. For example, suppose that you are a programmer and
you type in a complicated command to compile part of a program.
The program contains a syntax error, so you call a text editor to edit
the source code and correct the problem. Now you want to run the
same compilation command on the corrected program. You may save
yourself a good deal of typing by using

history

to find out the number of the previous compilation command, then
running the command with r. For example, if the command was
number 14, you type

r 14

The shell displays the original command 14, then runs it. If you get
another error, you can correct it, then compile again with another

r 14

Editing Commands from the History File

Using the MKS KornShell 15

This way, you can perform the operation many times, but you only
have to type the original once.

If you type r followed by a space, followed by a string of characters
(not beginning with a digit), the shell checks backwards through the
history file and runs the most recent command that begins with the
given string. For example, let's look at the compilation example.
Suppose you are using the Visual Studio cl command to compile
your program. Then

r cl

looks back through the history and runs the most recent cl
command. With this approach, you do not even have to check on the
number of the command you want to run. The shell displays the
selected command before running it.

This search backwards feature of r can search for aliases as well as
normal commands. It searches for the beginning of the command line
as you typed it, not the way that the line looked after the alias was
replaced.

If you type r without a number after it, the shell repeats the most
recent command. Think of r as a "redo" command.

Note The history and r commands are actually just predefined aliases
for the fc command. See the online fc reference page for more details.

You can also display and edit your command history from a
scrollable dialog by striking the ESC key then the g key.

Editing Commands from the History File
Suppose that you have a sequence of source files named file1.c,
file2.c, file3.c, and so on that you want to compile with similar
cl commands. This situation is a little different from the one
discussed in the last section. You do not want to re-run the same
command for each file; the command has the same form each time,
but you have to put in a new file name each time.

You can still do this using the history file. The command

r old=new command

Basic Features of the MKS KornShell

16 PTC MKS Toolkit

runs a previous command but replaces the first occurrence of the old
string with the new. For example, suppose you compile file1.c with

cl options file1.c

Then the command

r file1=file2 cl

tells the shell to search back for the most recent cl command and to
change file1 to file2. The shell makes this change, then displays
and runs the modified command.

r file2=file3 cl

performs the same kind of operation, changing file2 in the previous
command to file3 and then going ahead with the compilation. This
saves you the trouble of retyping all the options for the command.

A command of the form

r x=y 3

replaces x with y in command 3, and then runs the modified
command. If you just say

r old=new

it replaces old with new in the most recent command and runs the
modified command. Thus the minimum amount of typing in our
previous example is:

cl options file1.c
r 1=2
r 2=3
r 3=4
...

If you are doing this sort of thing, remember that the r command
only replaces the first occurrence of the old string. Take a moment to
make sure that this is not going to get you into trouble. In the first r
command, 1 is replaced with 2 where it first appears in the command
line; if the character appears in the options before the file name, the
file name stays the same and the options change... probably not what
you want. To get around this problem, you must give more of the old
string, as in

r file1=file2

Using the MKS KornShell 17

5Combining Commands

Now let's look at some simple ways in which you can combine
several commands on a single command line. The ability to string
and combine multiple commands on the command line is one of the
most powerful functions of the KornShell.

Multiple Commands
The MKS KornShell lets you type several commands on the same
command line. To do this, just use a semicolon character to separate
the commands, as in

cd mydir ; ls -l

If you have defined the alias

alias l="ls -l"

you can also say

cd mydir ; l

since you can use aliases like l after a semicolon.

Pipes
You can link a sequence of commands into a pipeline. A pipeline is
written as

command | command |...

The commands are entered on the same line and separated by or-bar
characters (|).

Combining Commands

18 PTC MKS Toolkit

The idea of a pipeline is that the output from one command is
pumped in as input to the next command. As an example of when
this is useful, look at the Toolkit command

ls -l

ls displays a good deal of information about the contents of the
current directory. If your directory is large, the information that ls
displays is more than the screen can display, so information runs off
the top of the screen.

You can avoid this problem by piping ls through the more command.
more reads input from a file or the standard input and displays a
screenful of it at a time. If you type

ls -l | more

the ls command produces its output and this output is piped into
more. more then displays this output one screenful at a time. In
general, you can pipe the output of any command into more to obtain
paginated output:

ls | more
cat file1 file2 file3 | more
egrep "pattern" file | more

and so on.

The UNIX-inspired commands of PTC MKS Toolkit are particularly
well-suited to being used in a pipeline. For example, the fgrep
command searches for a particular string in a file or from standard
input. A command like

history | fgrep "cp"

displays all the cp commands currently recorded in your history file.

ls -l | fgrep "Nov"

uses ls to obtain information on the contents of the current directory,
then uses fgrep to search through this information and displays only
the lines that contain the string Nov. This displays the files that were
last changed in November.

Command Substitution
When the shell encounters a construct of the form

$(command)

Command Substitution

Using the MKS KornShell 19

or

‘command‘

in an input command line, the shell runs the given command. It then
puts the output of the command, after converting newlines into
spaces, back into the command line, replacing command, and runs the
new line.

You will probably find the $(...) syntax easier to use for long
command lines; however, the backwards apostrophes (grave accents)
are more traditional and accepted on older UNIX shells.

As an example of how command substitution works, consider a file
called srclist, containing the following list of source code file
names:

alpha.c
beta.c
gamma.c

If you run the command

fgrep "printf" $(cat srclist)

the MKS KornShell uses cat to concatenate the contents of srclist,
rewriting the original command line, so that this line appears as:

fgrep "printf" alpha.c beta.c gamma.c

This line is then run, with fgrep searching through the given files,
displaying lines that contain the string printf. Programmers can use
this kind of construction as a quick way to locate all references to a
particular variable or function in the source code for a program.

The find command is often useful in command substitution
constructs. find displays the names of files that have specified
characteristics. For example,

find dir -name "*.c"

finds all files with the .c suffix under the dir directory.

ls -l $(find dir -name "*.c")

finds all the .c files then uses ls to display information about these
files.

Complicating things further, you could enter

ls -l $(find dir -name "*.c") | fgrep "Nov"

Combining Commands

20 PTC MKS Toolkit

This sets up a pipeline that only displays information on files that
were last changed in November. (To be perfectly accurate, it also
displays information on files that have the string Nov in their names
too.) If there are a lot of these, you can paginate the output with

ls -l $(find dir -name "*.c") | fgrep "Nov" | more

Another useful find option has the form

-ctime number

This says that you want to find files that have changed in the last
number 24-hour periods. For example,

ls -ld $(find dir -ctime 1)

displays ls information on all files that changed in the last 24 hours.

Search Rules
As mentioned earlier, command interpreters usually have to search
for a file that contains the command that you want to run. When you
are using the shell, you tell the shell where to search. Essentially, you
give the shell a list of directories in which commands may be found.
This list is called your search rules, because it tells the shell where you
want to search.

When you are running inside the MKS KornShell, you set up search
rules with a command of the form

PATH='dir;dir;...'

For example, you might say

PATH='c:/mks/mksnt;c:/windows;c:/usr/jean/bin;c:/games;c:/'

These directories are then searched by the shell, in the following
order, when it searches for commands or shell scripts.

1. c:/mks/mksnt

2. c:/windows

3. c:/usr/jay/bin

4. c:/games

5. c:/

Search Rules

Using the MKS KornShell 21

As soon as the shell finds a file with an appropriate name, it runs that
file. If the command on the command line has a suffix, the MKS
KornShell looks for a file with that name and suffix. If the command
does not have a suffix, the shell looks for a file with the same base
name and one of the suffixes

.com .exe .bat .sh .ksh

Under cmd.exe, the MKS KornShell looks for .cmd in addition to
.bat.

Since the shell runs a command as soon as it finds a file with an
appropriate name, pay close attention to the order in which directory
names are given in your search rules. For example, these search rules
specify the c:/mks/mksnt directory (where PTC MKS Toolkit
commands are stored, assuming ROOTDIR is set to c:/mks) before the
c:/windows directory. With this PATH, if you type in a sort
command, the shell uses the PTC MKS Toolkit version of sort
instead of the standard one.

If you set up your PATH incorrectly, you can get the wrong command.
You should probably always search the PTC MKS Toolkit commands
directory first, as PTC MKS Toolkit commands work in completely
different ways compared to standard commands of the same name.
As well, some Toolkit commands run other Toolkit commands by
name; they expect to get the PTC MKS Toolkit version of those
commands, and do not work correctly if the standard PC version is
found first.

It is often helpful to have the shell search your current directory for
commands (in addition to the standard directories that contain
commands). As an example, suppose that a programmer has different
directories containing the source code for different programs. Under
each directory, the programmer creates a shell script named
compile.ksh that compiles all the source modules of the program in
that directory. To compile a particular program, you just have to use
cd to change to the appropriate directory and then type

compile

The shell searches the current directory, finds the compile.ksh shell
script, and runs it. You can add the current directory to your search
rules by putting in an entry without a name. For example,

PATH='c:/mks/mksnt;;c:/windows'

says that the current directory is to be searched after c:/mks/mksnt
but before c:/windows.

PATH=';c:/mks/mksnt;c:/windows'

Combining Commands

22 PTC MKS Toolkit

says that the current directory is to be searched before anything else.

PATH='c:/bin;c:/windows;'

ends in a semicolon. This means that the current directory is searched
after everything else.

The best way to specify search rules is to put them into your profile
file. That way, they are set up every time you log into the shell.

Note If you log into the shell and specify search rules in your profile file,
the shell uses the given search rules. If you do not specify search rules,
the shell uses the search rules that were active in the previous command
interpreter. This means that if you are using both the shell and
command.com or cmd.exe, set up your search rules in a form that is
acceptable to both command interpreters.

command.com and cmd.exe always search the current directory,
whether or not it is specified in the search rules. On the other hand,
the MKS KornShell only searches the current directory if it is
explicitly mentioned in PATH. If your PATH specifies the current
directory, command.com and cmd.exe search the current directory
twice.

The whence Command
With aliases and search rules, it can be easy to lose track of what is
actually run when you type in a command. The whence command
can reduce the confusion.

whence command

tells you the file that is run if you type a command line that begins
with the given command. For example,

whence find

tells you what file is run if you type in a command line beginning
with find. This lets you sort out how the search rules work and what
effect aliases have.

Using the MKS KornShell 23

6Shell Scripts

So far we have discussed how the shell makes it easier for you to
enter single commands. This section discusses how the shell makes it
easier for you to perform sequences of commands.

Most people find themselves using some sequences of commands
over and over again.

 A programmer may always use the same commands to compile
source code, and link the resulting object code.

 A bookkeeper may have to go through the same sequence of
commands each week to update the books and produce a report.

 A person who is writing a document may go through the same
sequence of commands to combine separate chapters into a single
file, to format the file, and finally to print the file.

To simplify such jobs, the shell lets you run a sequence of commands
that have been stored in a normal text file. For example, the
programmer stores all the appropriate compiling and linking
commands in a single file. Once this is done, the programmer can run
all the commands by instructing the shell: "Run everything in this
file."

A file containing commands in this way is called a shell program or
shell script. Shell scripts have several advantages over typing the
commands individually.

 They reduce the amount of typing you have to do. You only have
to type in the shell script once. From that point onward, you can
run all the commands in the script using a single command to the
shell.

 They reduce the number of errors. If you are typing in ten
commands, you have ten chances to make a mistake. With a shell
script however, you can take your time, edit the file carefully, and
get it right before you try to run it. Once you get the shell script
right, you don't have to worry about typing mistakes any more.

Shell Scripts

24 PTC MKS Toolkit

 They are easy for other people to use. For example, consider the
bookkeeper mentioned earlier. When the bookkeeper goes on
vacation, someone else has to fill in. It is much easier for the fill-in
to type a single command which does everything correctly than
to try to type in the full sequence of commands.

Chapter 10: “Graphical
Features of the MKS
KornShell” on page 59
describes some of the
Windows specific facilities for
writing shell scripts in a
graphical environment.

For all these reasons, you will probably find that using shell scripts
makes your work easier and more productive. This chapter can only
scratch the surface, but it should give you an idea of how to write
shell scripts and use them profitably.

Running a Shell Script
The command

sh file

runs a shell script stored in the given file. This works from
command.com or cmd.exe as well as from the MKS KornShell,
provided that your search paths are set up to find the sh command.

If you are running under the MKS KornShell itself, you can usually
run a shell script simply by typing the name of the file that contains
the script. For example, suppose you have a file named shell.scp
which contains a script; if you type

shell.scp

at the shell prompt, the shell runs the script.

You can leave off the suffix part of a shell script file name if the suffix
is .ksh. For example, to run script.ksh, you only have to type

script

if you are already using the shell.

A Sample Shell Script
As an example of a simple shell script, let's look at the situation of a
programmer who wants to compile a collection of files written in the
C programming language. Assume that the PTC MKS Toolkit cc

Shell Scripts and Command Interpreters

Using the MKS KornShell 25

command has been set up to compile any file file.c and leave the
resulting object module in the file file.obj. Also assume that the
hypothetical command ld links object files together. The shell script

cc file1.c
cc file2.c
cc file3.c
 ...
ld file1.obj file2.obj ...

compiles everything and links the result.

You can create this script with any text editor. If you store it in the file
compile, it can be run with the single command

compile

You only have to type the shell script once; from that point onward,
you can run all the commands in the script by typing a single line.
This can save you a lot of time and effort if there are a lot of files, or if
some command lines have a lot of options. Not only does it reduce
the amount of typing you have to do, it reduces errors.

Shell Scripts and Command Interpreters
The .bat suffix is typically used for command files intended to run
under the command.com command interpreter. Similarly, the .cmd
suffix is used for command files intended to run under cmd.exe. Such
command files are similar to shell scripts, in that they consist of a
sequence of commands to be run by the command interpreter.
Indeed, if a file just contains a sequence of commands, without using
any of the special features of a command interpreter, you can run the
file as either a shell script or a command file.

To make things easier, on Windows 95/98/Me using command.com,
the MKS KornShell looks for al three of

file.bat
file.sh
file.ksh

when you attempt to run a shell script by typing

file

Shell Scripts

26 PTC MKS Toolkit

Similarly, on Windows NT/2000 using cmd.exe, the KornShell looks
for

file.bat
file.cmd
file.sh
file.ksh

Using .bat or .cmd is a good idea if your file is just a straightforward
sequence of commands; however, if a shell script uses any of the
special features of the shell, give the file the .ksh suffix so that you
know it is specifically a script for the MKS KornShell.

Shell Variables
You can think of shell scripts as programs made up of commands. To
allow more versatile shell scripts, the shell supports many of the
features of normal programming languages.

In a conventional programming language, a variable is a name that
has an associated value. Any time you want to use the value, you can
use the variable name instead.

The MKS KornShell also lets you create variables. A shell variable
name can consist of uppercase or lowercase letters, plus digits and
the underscore character (_). The name can have any length, but the
first character may not be a digit. Uppercase letters are distinguished
from lowercase ones, so

NAME
name
Name

are all different names.

To create a shell variable, just type

name='string'

as a command to the shell. Note that no spaces are allowed around
the =. For example,

HOME='c:/usr/jean'

sets up a variable with the name HOME and the value c:/usr/jean.

Any command can use the value of a variable with a dollar sign $
followed by the variable name. For example, if HOME is c:/usr/jean,

cd $HOME

Displaying Shell Variables

Using the MKS KornShell 27

is equivalent to

cd c:/usr/jean

Similarly,

cp $HOME/* /newdir

is equivalent to

cp c:/usr/jean/* /newdir

To change the value of an existing variable, you use a command with
the same form. For example,

HOME='c:/usr/george'

changes the current value of HOME.

If the value on the right hand side of the = sign does not contain any
shell special characters, you can leave out the apostrophes. For
example, you can just say

HOME=c:/usr/george

Displaying Shell Variables
You can display your variables and their values by typing

set

Other parts of this document
discuss some of these
predefined variables; for
complete information, see the
sh reference page in the online
PTC MKS Toolkit Utilities
Reference.

If you do this, you will probably see many variables that you don't
recognize. These are predefined variables, set up with default values at
the time that you invoke the shell.

You can display the value of a single variable with the echo
command. For example,

echo $HOME

displays the current value of the HOME variable.

You can also display and edit variables in a dialog box by entering the
gvar command.

Shell Scripts

28 PTC MKS Toolkit

Calculations with Variables
Suppose you run the following commands under the shell (either in a
shell script or by typing in one command after another).

i=1
j=$i+1
echo $j

The output of echo is 1+1. The reason is that a normal variable
assignment assigns a string to a variable. Thus j gets the string 1+1.

If you want to evaluate an arithmetic expression, you must use

let "variable=expression"

This assigns the value of an expression to the given variable. For
example, in

i=1
let "j=$i+1"
echo $j

the echo command displays the value 2. You can also say

i=1
let "i=$i+1"
echo $i

In this case, the let command changes the value of i. The new value
of i is the old value plus 1.

A let command can have any of the standard arithmetic expressions:

The standard mathematical order of operations is used, as shown in
the way that operations are grouped: all unary minus operations are
carried out, then any *, /, and/or % operations (from left to right in the
order they appear), then any additions or subtractions (from left to
right in the order they appear). Many operators use special shell

-A negative A

A*B A times B

A/B A divided by B

A%B remainder of A divided by B

A+B A plus B

A-B A minus B

Exporting Variables

Using the MKS KornShell 29

characters, so you usually need to put double quotes around the
expression to protect these operators from being misinterpreted by
the shell. Thus

let "i=5+2*3"

assigns 11 to i since the multiplication is done first. You can use
parentheses in the usual way to change the order of operations. For
example,

let "i=(5+2)*3"

assigns 21 to i.

Note let does not work with numbers that have fractional parts. It only
works with integers.

Exporting Variables
Up to this point, this document has only talked about defining shell
variables and then using them in later command lines. It is also
possible to define a shell variable and then call a shell script that
makes use of that variable; but you have to do a certain amount of
preparation first.

A shell script is run like a separate shell session. By default, it does
not share any variables with your current shell session. If you define
a variable VAR in the current session, it is local to the current session;
when you call shell scripts, they won't know about VAR.

To deal with this situation, you can issue the command

export VAR

The export command says that you want the variable VAR passed on
to all the commands and shell scripts that you run in this session.
Once you do this, VAR becomes global and the variable is known to all
the commands and shell scripts that you use.

As an example, suppose you issue the commands

MYNAME="Robin Hood"
export MYNAME

Shell Scripts

30 PTC MKS Toolkit

From this point onward, all your commands can use the MYNAME
variable to obtain the associated name. You may, for example, have
shell scripts which write up form letters that contain your name,
obtained from the MYNAME variable.

When a script begins running, it automatically inherits all the
variables currently being exported. However, if the script changes the
value of one of those variables, that change is not reflected to the
calling shell.

By default, any variables created within a shell script are local to that
script. This means that when another program is run, it does not see
those variables in its environment. However, the script can use the
export command to turn local variables into global ones.

Inside a shell script,

export name

indicates that the variable with the given name is to be exported.
When other programs are run from that script, they inherit the value
of all exported variables. However, when the script terminates, all its
exported variables are lost to the calling shell.

Some variables are automatically marked for export by the software
that creates them. For example, if you log into the shell, the login
procedure automatically marks the HOME variable for export so that
other commands and shell scripts can use it. Other variables must be
explicitly exported. For example,

export PATH

is commonly used so that search rules and changes to search rules are
automatically shared by all shell sessions and scripts.

Variable Attributes
The typeset command lets you associate attributes with shell
variables. This process is analogous to declaring the type of a variable
in a conventional programming language. For example,

typeset -i8 y

says that y is an octal integer. In this way, you can make sure that
arithmetic with y is always performed in base eight rather than the
usual base ten.

Other attributes may specify how the variable's value is displayed
when the variable is expanded. Attributes of this kind are:

Variable Attributes

Using the MKS KornShell 31

-L n Value is always displayed with n characters, with the value
left-justified within that space.

-R n Value is always displayed with n characters, with the value
right-justified within that space.

-RZ n Value is always displayed with n characters, with the value
right-justified and enough leading zeroes to fill out the rest of
the space.

-Z n Same as -RZn.

-LZ n Value is always displayed with n characters, with the value
left-justified and leading zeroes stripped off.

All of these options may lead to truncation of the value if it is longer
than the specified length.

Variables with string values may be typeset with the -u attribute.
This means that whenever such a variable is assigned a new value, all
lowercase letters in the value are automatically converted to
uppercase. Similarly, the -l attribute means that whenever a variable
is assigned a new value, all uppercase letters in the value are
automatically converted to lowercase.

The read-only attribute -r is useful when a variable is marked for
export. The command

typeset -r name

says that the variable name cannot be changed from its present value.
This makes it impossible for subsequent commands to change this
value. You may also use the format

typeset -r name=value

which sets the variable to the given value, then marks it read-only so
that the value cannot be changed. The command

typeset

with no arguments displays the currently defined variables and their
attributes. A useful variation is

typeset -x

which displays all the variables which are currently defined for
export.

Shell Scripts

32 PTC MKS Toolkit

Positional Parameters
The script described in “A Sample Shell Script” on page 24 was
designed to compile and link a program stored in a collection of
source modules. This section discusses a shell script that can compile
and link a C program stored in any file.

To create such a script, you need to be familiar with the idea of
positional parameters. When the shell encounters a construct formed by
a $ followed by a number, the shell replaces the construct with a
value taken from the command line that invoked the shell script. $1
refers to the first string after the name of the script file on the
command line, $2 refers to the second string, and so on.

As a simple example, consider a shell script consisting only of the
command

echo $1

Suppose this script is contained in the file echoit.ksh and suppose
we run the command

echoit hello

the shell reads the shell script from echoit.ksh and tries to run the
command it contains. When the shell sees the $1 construct in the echo
command, it goes back to the command line and obtains the first
string following the name of the shell script on the sh command line.
The shell replaces the $1 with this string, so the echo command
becomes

echo hello

The shell then goes on to run this command.

A construct like $1 is called a positional parameter. Parameters in a
shell script are replaced with strings from the command line when
the script is run. The strings on the command line are called positional
parameter values or command line arguments.

Command line arguments may be enclosed in quotes (single or
double). For example,

echoit "Hello there"

echoes the two words instead of just one. If you say

echoit Hello there

the string Hello is considered parameter value $1 and there is $2.
Of course, the shell script is only

echo $1

Positional Parameters

Using the MKS KornShell 33

so the echo command displays only the Hello.

Going back to the compile and link example, you can write a general
shell script as

cc $1.c
ld $1.obj

As before, assume that cc compiles a .c source file to produce a .obj
object file, and that ld is a command that links a .obj object file to get
an executable file. If you store this in the file clink.ksh, you can say

clink prog

to compile and link prog.exe. The commands that the shell runs are

cc prog.c
ld prog.obj

In the same way, the command

clink dir/prog2

compiles and links dir/prog2.c. You can use this shell script to
compile and link a C program stored in a single file.

As another example of a shell script containing a parameter, suppose
that the file lookup.ksh contains

fgrep $1 address

(where address is a file containing names, addresses, and other useful
information). A command like

lookup Smith

displays address information on anyone in the file named Smith.

Quotes in Shell
Scripts

A $n construct (that is, a positional parameter) in a shell script may be
enclosed in quotes. When double quotes are used, the parameter is
replaced by the appropriate value from the command line. For
example, suppose the file search.ksh contains

fgrep "$1" *

If you issue the command

search 'two words'

the parameter value 'two words' replaces the construct $1 in the
fgrep command, making

fgrep "two words" *

Shell Scripts

34 PTC MKS Toolkit

If the fgrep command does not contain the double quotes, the
parameter replacement results in

fgrep two words *

which has an entirely different meaning.

When you use single quotes to enclose a $n construct in a shell script,
the $n is not replaced by the corresponding parameter value. For
example,

fgrep '$1' *

searches for the string $1. The $1 is not replaced by a value from the
command line. In general, single quotes are stronger than double
quotes.

Control Structures
We have already mentioned that the shell provides facilities that are
similar to those found in programming languages. The sections to
come discuss some of the control structures of the shell, related to
programming control structures like if statements and while loops.

Testing
Conditions

Before discussing the various control structures, it is useful to talk
about ways to test for various conditions.

The test command tests to see if something is true. The following
tables shows the ways it can be used.

For a full description of the
test command, see the test
reference page in the online
PTC MKS Toolkit Utilities
Reference.

Examine the nature of files

test -d pathname is pathname a directory?

test -f pathname is pathname a file?

test -r pathname is pathname readable?

test -w pathname is pathname writable?

Compare the age of two files

test file1 -ot file2 is file1 older than file2?

test file1 -nt file2 is file1 newer than file2?

Control Structures

Using the MKS KornShell 35

In all of these cases, the result of test is true or false. (To be precise,
test returns a status of zero if the test turns out to be true and a
status of one if the test turns out to be false.)

You can use -n to check if a variable has been defined. For example,

test -n "$HOME"

is true if HOME exists, and false if you have not created a HOME
variable.

If expression is one of the expressions recognized by test, then

test ! expression

returns false if expression is true, and true if expression is false. For
example,

test ! -d pathname

is true if pathname is not a directory, and false otherwise.

Compare the values of two
numbers A and B

test A -eq B is A equal to B?

test A -ne B is A not equal to B?

test A -gt B is A greater than B?

test A -lt B is A less than B?

test A -ge B is A greater than or equal to B?

test A -le B is A less than or equal to B?

Compare two strings s1 and s2

test s1 = s2 is s1 equal to s2?

test s1 != s2 is s1 not equal to s2?

Test whether strings are empty

test string is string not empty?

test -z string is string empty?

test -n string is string not empty?

Shell Scripts

36 PTC MKS Toolkit

The if
Conditional

An if conditional runs a sequence of commands if a particular
condition is met. It has the form

if condition
then commands
fi

The end of the commands is indicated by fi (which is if backwards).
For example,

if test -d $1
then lc $1
fi

This tests to see if the string associated with the first positional
parameter is the name of a directory. If so, it runs an lc command to
display the contents of the directory.

Any number of commands may come between the then and the fi
that ends the construct. For example, you might have written

if
 test -d $1
then
 echo "$1 is a directory"
 lc $1
fi

This example also shows that the commands do not have to begin on
the same line as then, and the condition being tested does not have
to begin on the same line as if. The condition and the commands are
indented to make them stand out more clearly. This is a good way to
make your shell scripts easier to read.

Another form of the if conditional is

if condition
then commands
else commands
fi

If the condition is true, the commands after the then are run;
otherwise, the commands after the else are run. For example,
suppose you know that the string associated with the variable
pathname is the name of either a directory or a file. Then you can
write:

Control Structures

Using the MKS KornShell 37

if
 test -d $pathname
then
 echo "$pathname is a directory"
 lc $pathname
else
 echo "$pathname is a file"
 more $pathname
fi

If the value of pathname is the name of a file, this shell script uses
echo to display an appropriate message, then uses more to display
the contents of the file.

The final form of the if construct is

if condition1
then commands1
elif condition2
then commands2
elif condition3
then commands3
 ...
else commands
fi

elif is short for else if. In this example, if condition1 is true, commands1
are run; otherwise, the shell goes on to check condition2. If that is true,
commands2 are run; otherwise, the shell goes on to check condition3
and so on. If none of the test conditions are true, the commands after
the else are run. The following example shows how this can be used.

if test ! "$1"
then
 echo "no positional parameters"
elif test -d $1
then
 echo "$1 is a directory"
 lc $1
elif test -f $1
then
 echo "$1 is a file"
 more $1
else
 echo "$1 is just a string"
fi

The test after the if determines if the value of the first positional
parameter is an empty string. If so, it means that there are no
positional parameters, so the shell script uses echo to display an

Shell Scripts

38 PTC MKS Toolkit

appropriate message; otherwise, the script checks if the parameter is
a directory name; if so, the directory's contents are listed with lc. If
that doesn't work, the script checks if the parameter is a file name; if
so, the contents of the file are listed with more. Finally, if none of the
previous tests work, the parameter is assumed to be an arbitrary
string, and the script displays a message to this effect.

You can put this script into a file named listit.ksh and run
commands of the form

listit name

The shell script does its best to list the contents of name in some useful
form.

The while Loop The while loop repeats one or more commands while a particular
condition is true. The loop has the form

while condition
do commands
done

The shell first tests to see if condition is true. If it is, the shell runs the
given commands. It then goes back to check the condition. If it is still
true, the shell runs the commands again, and so on, until the condition
is found to be false.

As an example of how this can be used, suppose a programmer wants
to run a program named prog 100 times to get an idea of the
program's average running speed. The following shell script does the
job.

i=100
date
while test $i -gt 0
do
 prog
 let i=$i-1
done
date

The script begins by setting a variable i to 100. It then uses the date
command to get the current date and time. (Note that this is the date
command from PTC MKS Toolkit, not the command.com or cmd.exe
date command.)

Next the script performs a while loop. The test condition says that
the loop is to keep on going as long as the value of i is greater than
zero. The commands of the loop run prog and then subtract one from
the i variable. In this way, i goes down by 1 each time through the

Control Structures

Using the MKS KornShell 39

loop, until it is no longer greater than 0. At this point, the loop stops
and the final instruction of the script displays the date and time at the
end of the loop. The difference between the starting and ending times
gives you an idea of how long it took to run the program 100 times.

(Of course, the shell itself takes some time to perform the test and to
do the calculations with i. If prog takes a long time to run, the time
spent by the shell is relatively unimportant; if prog is a quick
program, the extra time that the shell takes may be large enough to
invalidate the timing.)

You can rewrite this shell script to make it a little more efficient.

i=100
date
while let "(i=i-1)>=0"
do
 prog
done
date

In this example, the let command is the condition of the while loop.
It gives i a new value and then compares this value to zero. The
advantage of writing the program this way is that it does not have to
call test to make the comparison; this speeds up the loop and makes
the time more accurate.

The for Loop The final structure we’ll examine is the for loop. It has the form

for name in list
do commands
done

The name is a variable name; if this variable doesn't exist, it is created.
The list is a list of strings separated by spaces. The shell begins by
assigning the first string in list to the variable name. It then runs the
commands once. When the commands have been run, the shell assigns
the next string in list to name, and repeats the commands. The shell
goes through the commands once for each string in list.

As a simple example of a shell script that uses for, consider

for file in *.c
do
 cc $file
done

When the shell looks at the for line, it expands the expression *.c to
produce a list containing the names of all files (in the current
directory) that have the suffix .c. The variable file is assigned each

Shell Scripts

40 PTC MKS Toolkit

of the names in his list, in turn. The result of the for loop is to use the
cc command to compile all .c files under the current directory. If you
want, you can write

for file in *.c
do
 echo $file
 cc $file
done

so that the shell script displays each file name before compiling it.
This lets you keep track of what the script is doing.

As you can see, the for loop is a powerful construct. The list can also
be created with command substitution, as in:

for file in $(find . -name "*.c")
do
 echo $file
 cc $file
done

This uses the find command to find all .c files under the current
directory, and then compiles these files. This is similar to the previous
shell script, but also looks at subdirectories of the current directory.

Combining
Control
Structures

You can combine control structures by nesting (that is, putting one
inside another). For example,

for file in $(find . -name "*.c")
do
 if test $file -ot $1
 then
 echo $file
 cc $file
 fi
done

This shell script takes one positional parameter, giving the name of a
file. The script looks under the current directory and finds the names
of all .c files. The if construct inside the for loop tests each file to
see if it is older than the file named on the command line. If the .c file
is older, echo displays the name, and the file is compiled. You can
think of this as bringing a set of files up-to-date with the file name
specified on the command line.

Functions

Using the MKS KornShell 41

Functions
Shell functions are similar to subprograms in standard programming
languages: it is a sequence of commands aimed at doing a single job.
Typically, functions are used for operations that you tend to do
frequently during a session. For example, consider this function:

function temphome
{
 curdir=$(pwd)
 cd $HOME
 $1
 cd $curdir
}

The first line indicates that this is a function named temphome(). The
commands that make up this function are enclosed in brace brackets
following the heading line. The first command

curdir=$(pwd)

runs the pwd command to get the name of the current directory, and
assigns this directory name to the variable curdir. The next
instruction goes to your home directory. After that comes a line that
consists only of the positional parameter $1, and finally a cd
command that uses curdir to go back to our original directory.

The purpose of temphome() is to go to the home directory, run a
command, then return to the directory from which it was called. To
call this function, type temphome followed by the command you want
to run. For example,

temphome lc

runs lc on your home directory. Notice that lc is the first positional
parameter, so it is run in place of $1 within the temphome() function.
To run a longer command, put it in quotes, as in

temphome "lc srcdir"

What's the point of temphome()? There are often situations where
you want to run a particular command in your home directory (for
example, the command makes use of files in the current directory,
and the files you want to use are in your home directory). If you are
working in a different directory, it's annoying to have to cd to your
home directory, then cd back. A function like temphome() does the
work for you. Of course, with the lc examples, you can use lc
directly, without going through the trouble of using temphome();
however, with other commands temphome() may save you some
trouble.

Shell Scripts

42 PTC MKS Toolkit

Anytime you find yourself doing the same sequence of commands in
a shell session, ask yourself if it is simpler to define a function to do
the same thing. You can put a function definition in your profile file
and be able to use it whenever you log into the shell.

Returning
Values from a
Function

Just as a single command sometimes returns an exit status, a function
can also return a value. If the statement

return expression

appears inside a function, the function terminates and the value of
the expression is returned as the status or result of the function. In
general, returning a zero means that the function has succeeded in its
task; returning a one means that the function has failed. For example,
here's a function that is similar to our temphome() example in the
previous section.

function td
{
 if test -d "$1"
 then
 curdir=$(pwd)
 cd $1
 $2
 cd $curdir
 return 0
 else
 echo $1 "is not a directory"
 return 1
 fi
}

The td() function takes two arguments. The first is supposed to be a
directory name. The test command checks to see if it really is a
directory name; if so, td() temporarily goes to that directory, runs a
single command (the second positional parameter), then returns zero
to indicate success. If the first parameter is not an existing directory
name, the function displays an appropriate message and returns one
to indicate failure. You might call this function with the line

td srcdir lc

which lists the contents of the directory srcdir, if that directory
exists.

Using the MKS KornShell 43

7Customization

Customization is the process of changing something to suit your
own tastes. The ability to customize the way you use the computer is
central to the philosophy of the PTC MKS Toolkit—you should be
able to work your way, not someone else's.

This tutorial has already examined many of the features that let you
customize the MKS KornShell to your own preferences. For example,
aliases play a large role in customization.

Customizing Aliases
You have already seen that you can create aliases that let you give
your own names to commands. This is certainly one aspect of
customization; however, there is another aspect that has not been
discussed yet.

Let's take an example. The egrep command searches through files
and displays lines that contain a requested string. For example,

egrep hello file

displays all the lines of file that contain the string hello. Normally,
egrep distinguishes between uppercase and lowercase letters; this
means that this search does not display lines that contained HELLO or
Hello. If you want egrep to ignore the case of letters as it searches,
you must specify the -i option, as in

egrep -i hello file

This finds hello, HELLO, Hello, and so on.

There are probably many users who prefer to use the -i version of
egrep most of the time—it certainly makes sense in many cases. If
so, you can define the alias

alias egrep="egrep -i"

Customization

44 PTC MKS Toolkit

From this point on, if you use the command

egrep string file

it is automatically converted to

egrep -i string file

and you get the case-insensitive version of the command egrep. It
may seem odd to define an alias that has the same name as a
command that is used in the alias, but this is so common that the
MKS KornShell checks specially for an alias of the same name, and
does the correct thing.

As another example, the rm command to delete a file has an -i option
that asks you

"Ok to delete?"

before it actually removes a file. If you like this extra bit of safety, you
might define

alias rm="rm -i"

After this, when you call rm, it automatically checks with you before
deleting a file, just to make sure that you really want to delete it.

For more information, see the
gvar reference page in the
online PTC MKS Toolkit
Utilities Reference.

You can also set and display aliases from a dialog box with the gvar
command.

If you find yourself using the same option every time you call a
command, you might consider creating an appropriate alias so that
the shell automatically adds the option every time you call the
command. Of course, the best place to define this alias is in your
profile file, so that the alias is set up every time you start a session.

Turning Off an Alias
If you have set up an alias like the one for rm, you may find that you
do not want the alias to apply in some situations. For example, when
you delete a huge number of files, you probably do not want rm to
ask if it is okay to delete each one. In this situation, you have several
options that should help you:

 Get rid of the alias entirely. The command

unalias rm

gets rid of the rm alias. After this, when you type rm, you get the
real rm command.

Prompts

Using the MKS KornShell 45

 Escaping the alias. As you have already seen, putting a backslash
in front of special characters tells the shell to use the literal
meaning of the character. The same is true of aliases.

\rm file

tells the shell not to replace the rm with its alias.

 Quoting the alias. This method is similar to escaping the alias.
The quotes tell the shell to use the literal meaning of the string
contained within them.

'rm' file

 Specify the full path name. For example,

exec_pathname/rm file

(where exec_pathname is the path name under which the
executables are stored, usually ROOTDIR/mksnt/) tells the shell to
run the program rm found in the given path. The shell does not
perform alias substitution when a command is specified as a path
name in this way.

Prompts
By default, the MKS KornShell prompts for command input with a $
followed by a space. Many users prefer to change this to something
more personal.

To determine the command prompt, the shell looks at the PS1
variable. Thus you can change your prompt by changing the
variable's value. For example,

PS1="jean% "

sets your command prompt to jean%. After this, the shell prompts
with

jean%

when it wants you to input a command.

If the string associated with PS1 contains a single !, the shell replaces
the character with the command number from the history list. For
example, if you set up

PS1="jean-!% "

Customization

46 PTC MKS Toolkit

you get prompts of

jean-1%
jean-2%
...

The great benefit of this is that it simplifies the job of rerunning a
previous command with r—you do not have to look up the
command's number in the history list, because the number is right
there in the prompt.

By default, when the shell prompts for the continuation of a construct
(for example, a for loop), it displays >. You can change this prompt
by assigning a new value to the PS2 variable. For example,

PS2="continue: "

displays

continue:

when prompting for the continuation of a construct. Having a longer
prompt sometimes helps to remind you that you are in the middle of
something.

For more information, see the
gset reference page in the
online PTC MKS Toolkit
Utilities Reference.

You can also set your system prompts from a dialog box using the
gset command.

Of course, the best place to assign different values to the prompt
strings is inside your profile file, so that the prompts are set up every
time you start a session.

Setting Options
The set command lets you set options for your MKS KornShell
session. To turn an option on, use

set -o name

where name is the name of the option you want to turn on.

To turn an option off, use

set +o name

For a complete list of options,
see the set reference page in
the online PTC MKS Toolkit
Utilities Reference.

Following are some of the options you may find useful.

set -o allexport

The ENV Variable

Using the MKS KornShell 47

indicates that you want to export every variable which is assigned a
value. This exports all variables that currently have values, plus all
variables assigned a value in future.

set -o noclobber

indicates that you do not want the > redirection operator to overwrite
existing files. If you specify the construct >file, the redirection only
works if file does not already exist. If you have this option on and you
really do want to redirect output into an existing file, you must use
>|file (with an or-bar after the >) to indicate output redirection.

set -o noglob

tells the shell not to expand wild card characters in file names. This is
occasionally useful if you are typing in command lines that contain a
number of characters that are normally expanded.

set -o verbose

tells the shell to display its input on the screen as the input is read.
This lets you keep track of material that comes from a file.

set -o

displays all current option settings.

The ENV Variable
So far, we have discussed customization inside your profile file, but
the shell only reads your profile file when you log on or when you
invoke the shell with the -L option. How can you customize a shell
session when you invoke the shell in some other way, for example,
from within an editor like vi?

When you invoke the shell, it looks for an environment variable
named ENV. If this variable exists, its value is assumed to be the name
of a file containing shell commands. The shell executes the
commands in this file before proceeding with the rest of the session;
therefore, you can use the ENV variable to point to a set-up file which
sets things up in the same way that the profile file does.

For example, you might put all your alias definitions and other set-up
instructions into a file called /mysetup.ksh. You want these
instructions executed the first time your shell starts executing (after

Customization

48 PTC MKS Toolkit

booting) and whenever you explicitly call the shell during a session
(for example, as a subshell to execute a shell script). To make sure ENV
is set up after booting, put the following into your autoexec.bat file:

ENV=/mysetup.ksh
ENV=mysetup

To make sure ENV is set up when you execute a subshell, put the
following into your profile.ksh file:

export ENV=/mysetup.ksh

You might find it useful to move all your aliases out of your profile
file and into your ENV file instead; however, you should keep
exported variable assignments in your profile, so that they are only
executed once.

Using the MKS KornShell 49

8Command Editors

If you are an experienced computer user, you may already be
familiar with the notion of command editing. If you have never seen
command editing before, the best way to see how it works is to start
with an example.

Suppose you want to find a file that you know is in a subdirectory of
a directory. There are plenty of clever ways to look for the file (for
example, by using the find command), but if you are not exactly sure
what you are looking for, you might easily go through a sequence of
commands like this:

lc /dir
lc /dir/subdir
lc /dir/subdir/subsub
lc /dir/subdir/subsub/subsubsb
lc /dir/subdir/subsub/subsubsb/more

and so on. (Yes, you can also use the cd command to reduce the
amount of typing during this search, but often you do not want to
leave the directory you are in.)

As you can see, each lc command consists of the previous command
plus some added material. If you can start with the previous
command instead of a blank command line, you do not have nearly
as much typing to do.

That is the idea behind command editing. Command editing lets you
access commands from your history file, edit them, and run the
result. You have already seen this process before, when discussing
some of the features of the r command; but this chapter looks at a
simpler way of doing things.

Command Editors

50 PTC MKS Toolkit

Asking for the vi Command Editor
You can also select your edit
mode from a dialog box with
the gset command. For more
information, see the gset
reference page in the online
PTC MKS Toolkit Utilities
Reference.

If you run the MKS KornShell command

set -o vi

it tells the shell that you want the ability to edit commands the way
that you normally edit text with vi.

Once you have done

set -o vi

you are set up for vi command editing. Whenever the shell prompts
you for input, it is as if the shell puts you into vi's insert mode on a
new line at the end of the history file. You can type in a new
command line just as you normally would.

You can also press ESC to enter a vi-like command mode. When you
enter command mode, you can use the usual cursor movement
commands to move around on the command line, or to move up and
down in the history file. For example, if you press the key (or k),
you move to the previous line in the history file (the last command
line you entered). Press again, and you move to the line before that.
Press (or l) and you move forward in the history file.

In this way, it’s simple to retrieve recent commands from the history
file. You can then edit them using standard vi commands. For
example, you can use $ to move to the end of the line, and a to begin
appending text to the end of the line. When you have edited the line
to produce the command that you want to run, simply press ENTER to
run that line.

As you would expect, you can use the search commands

/string
?string

to search backwards and forwards through the history file. You can
edit the command line with

For a complete list of available
commands, see the shedit
reference page in the online
PTC MKS Toolkit Utilities
Reference.

w — move to next word
b — move to previous word
d — delete
c — change
a — append
i — insert
u — undo

and many of the other vi commands we have discussed.

Asking for the EMACS Command Editor

Using the MKS KornShell 51

Asking for the EMACS Command Editor
If you are familiar with the EMACS editor, you may prefer

For full details on using the
EMACS command editor, see
the shedit reference page in
the online PTC MKS Toolkit
Utilities Reference.

set -o emacs

This allows you to use commands identical to those of EMACS to edit
your shell command line.

Using a Command Editor
If you have never used command editing before, it takes some time to
realize when it can be useful. Look for times when you are running
the same sequence of commands, or slight variations on the same
sequence of commands. Look especially for long commands that
normally require a lot of typing; the whole point of command editing
is to save yourself the trouble of typing the same thing over and over
again. Command editing is also very useful when you have made a
mistake in typing a command line and wish to correct it. If you
remember that the command editing facilities are there, you will
probably soon see opportunities to use them.

Command Editors

52 PTC MKS Toolkit

Using the MKS KornShell 53

9Miscellaneous Points

This chapter covers additional topics that may contribute to your
productive use of the shell.

Tilde Expansion
After all alias substitution has taken place, the shell looks to see if
anything on the command line begins with the tilde (~) character. If
so, the shell checks on everything from the tilde up to the next slash
character; if it is one of a set of recognized sequences, the shell
replaces the sequence with another value.

For example, a tilde by itself stands for your home directory (that is,
the directory given by your HOME environment variable).

cp ~/file1 file2

copies file1 under your home directory into file2. This works
regardless of what your current directory is.

cp file1 ~/dir

copies file1 from the current directory into dir under your home
directory.

A tilde followed by + stands for the variable PWD (which contains the
name of your current working directory). A tilde followed by -
stands for the variable OLDPWD (which gives the name of the working
directory you were in immediately before the last cd command).

A tilde followed by a person's login name stands for that person's
home directory; therefore,

more ~jsmith/profile.ksh

displays the profile file of jsmith, from his or her home directory.
Notice that you do not have to know what the person's home
directory is; the shell looks up that information for you.

Miscellaneous Points

54 PTC MKS Toolkit

These sequences are the only tilde expansions recognized by the MKS
KornShell. If a tilde is followed by any other sequence, the entire
sequence is left unchanged.

Modified Parameter and Variable Expansion
In shell scripts or functions, a $ followed by a number stands for a
positional parameter to the script or function. For example, if the
command

echo $1

appears in a shell script, it will echo the first positional parameter.
Similarly, a $ followed by the name of a shell variable stands for the
value of the variable.

These constructs are called parameter expansions. In this sense,
parameter can mean either a positional parameter or a shell variable.

The MKS KornShell also supports more complicated forms of
parameter expansions, letting you obtain only part of a parameter
value or a modified form of the value. The easiest way to understand
this is to look at some examples.

${parameter:-value}

can be used in any input to the shell. If parameter currently has a value
and the value is not null (for example, a string without characters),
this construct stands for the parameter's value; if the parameter does
not have a non-null value, this construct is replaced with the value
shown in the brace brackets. For example, a shell script might contain

SHELL=${SHELL:-bin/sh}

If the SHELL variable currently has a value, this assignment simply
assigns SHELL its own current value; however, if SHELL does not have
a non-null value, this assignment gives it the value of bin/sh. The
value after :- can be thought of as a back-up value in case the
parameter itself does not have a value. As another example, consider
the following example that might occur in a shell script:

cp $1 ${2:-$HOME}

If both positional parameters are present with non-null values, the
copy command is just

cp $1 $2

Modified Parameter and Variable Expansion

Using the MKS KornShell 55

However, if you call the shell script without specifying a second
positional parameter, it uses the back-up value of HOME and the result
is equivalent to

cp $1 $HOME

The expansion form

${parameter:=value}

is similar to the previous form; the difference is that if the given
parameter does not currently have a value, the given value is assigned
to parameter, and then the new value of parameter is used. Thus, the
:= form actually assigns a value if the parameter does not already have
one. In this case, the parameter must be a variable; it cannot be a
positional parameter.

${parameter:?message}

is related to the previous two forms. If the given parameter is not
defined or is null, message is displayed. If the construct is being used
inside a shell script, the script terminates with an error status. For
example, you might have

cp $1 ${2:?"Must specify a directory name"}

In this case, the message following the ? is displayed if there is no
second positional parameter. If you omit the message, the shell
displays a standard message.

For example, you can just say

cp $1 ${2:?}

to get the standard error message.

The construct

${parameter:+replacement}

might be thought of as the opposite of the preceding expansions. If
parameter has not been assigned a value, or has a null value, this
construct is just the null string. If parameter does have a non-null
value, the value is ignored and the replacement value is used in its
place. Thus if a shell script contains

echo ${1:+"There was a parameter"}

the echo command displays

There was a parameter

if the script was invoked with a parameter. If no parameter was
specified, the echo command has nothing to echo.

Miscellaneous Points

56 PTC MKS Toolkit

String Matching Modifiers
Another set of parameter modifiers use wild card expressions to
discard part of the parameter value.

${parameter#pattern}

is evaluated by expanding the value of parameter and then deleting
the smallest left most part of the expansion that matches the given
pattern of path name wild card characters. For example, suppose that
the variable NAME stands for a file name. You might use

${NAME#?:}

to remove the device part of the name. If

NAME="C:dir/subdir/file.c"

then

${NAME#?:}

expands to

dir/subdir/file.c

Just as the previous construct removes the smallest left most part of
the parameter,

${parameter##pattern}

removes the largest left most part that matches the pattern. For
example,

${NAME##*/}

yields

file.c

The wild card character * stands for any sequence of characters. In
this situation, it stands for everything up to the final slash.

The construct

${parameter%pattern}

removes the smallest right most part of the parameter expansion that
matches pattern. Thus

${NAME%.?}

stands for

C:dir/subdir/file

Special Parameters

Using the MKS KornShell 57

Similarly,

${parameter%%pattern}

stands for the expansion of parameter without the longest rightmost
string that matches pattern. For example,

${NAME%%/*}

stands for

C:dir

As all these examples suggest, these parameter modifiers are
intended to let you break off parts of file names. For example,

for $i in *.*
do
 mv $i ${i%.*}.txt
done

obtains the names of all the files in the current directory and renames
them to have the suffix .txt.

Special Parameters
The MKS KornShell has a variety of special parameters that may be
used in shell scripts and command lines.

$@ stands for the complete list of positional parameters, each
separated by a single space. For example,

echo $@

If the positional parameters are all file names,

cp $@ dir

copies all the files to the given directory dir.

$* stands for the complete list of positional parameters, each
separated by the first character of the value of the shell
variable IFS. For example, with

IFS=,$IFS

then

echo "$*"

displays the parameters with separating commas.

$# is the number of positional parameters passed to this shell
script. This number can be changed by several MKS

Miscellaneous Points

58 PTC MKS Toolkit

KornShell commands (for example, set or shift).

$? is the exit status value returned by the most recently run
command.

$- stands for the set of options that have been specified for this
shell session. This includes options that were specified on the
command line that invoked the shell, plus other options that
have been set via the set command.

Using the MKS KornShell 59

10Graphical Features of
the MKS KornShell

Along with all of the standard KornShell functionality, the MKS
KornShell provides additional features that allow users to interact
with and manipulate the Windows environment. With the power and
ease of these features, you can just point and click to perform many of
the most common Toolkit functions.

This chapter touches upon
many facets of the Windows
specific Kornshell commands.
It is not, however, a
comprehensive guide to these
commands. For complete
information, see the online
PTC MKS Toolkit Utilities
Reference.

Whether you are a novice or a seasoned shell programmer, you’ll find
that the graphical capabilities of the MKS KornShell will make your
programs easier to write and more user friendly. With commands
such as msgbox, filebox, start, dlg, and bindres, your KornShell
scripts can be used to augment or replace large programs written in
far more complex languages such as C or C++.

Managing the KornShell
The graphical nature of Windows makes it easy to determine how
your KornShell looks and works. No longer do you need to search for
the exact syntax of a command to make the shell function the way
you want; most commonly used shell settings and environment
variables are now available in easy to use graphical dialogs.

gvar Use the gvar command to set environment variables. Click on the
property sheets to view and/or edit:

Under Windows 95/98/Me,
you can invoke gvar from the
toolbar by clicking

 Variables

View all environment variables, or only those that are read-only
or exported. You can also add, delete, or modify any shell
environment variable from this dialog box.

 Positional Parameters

Display all currently set positional parameters.

Graphical Features of the MKS KornShell

60 PTC MKS Toolkit

 Functions

Display a list of all currently set functions.

 Aliases

Display the name and expanded value of all current shell system
aliases. You can also add, delete, or modify any shell alias.

gset The gset command lets you set many of the common set options, as
well as define other aspects of how the shell functions. The KornShell
Options dialog box displayed by gset offers the following property
sheets where you can view and/or edit settings:

Under Windows 95/98/Me,
you can invoke gset from the
toolbar by clicking

 User

Determine how the shell manages output redirection, end-of-
files, and file name generation.

 Environment

Define whether environment variables are automatically
exported, whether they can be included on the command line,
and whether unset parameters can be used in substitution.

 Edit

Choose between vi, emacs, or standard windows editing modes.

 Messages

Set Verbose Echo, Execute Trace, and specify whether errors are
returned on the command line or in a message box.

 Prompt

Define how your primary and secondary command line prompts
appear.

 History

Set your history file and the number of lines it will contain.

 Persistence

Save the current option settings for future use, and set whether
the saved option settings are used on shell startup.

Desktop Tools
The MKS KornShell includes graphical utilities that let you display
and edit much of the most useful file, user, and system information.

Using Graphical Features in Shell Scripts

Using the MKS KornShell 61

autorun, gdir, ghist, gps, and ugrep are shell scripts which
incorporate the dlg command, and can be examined as examples of
advanced dlg shell scripting.

autorun Sets the Windows registry database to run any
command on startup.

gdir Displays a list of recently visited directories, inserts a
directory name into the stack (like the command line
pushd), or goes to any directory in the stack (like the
command line popd).

ghist Displays a graphical history of your previous shell
command lines. To rerun any command in the
history, scroll to the command you want and double
click. To edit a command, click it once to display it in
the Current Line field, make any changes, then click
OK to run it.

You can invoke ghist by hitting ESC-g in vi or
emacs command line editing mode, entering ghist
on the command line, or from the toolbar under
Windows 95/98/Me.

gps Displays a scrollable list of all processes currently
running on your system.

ugrep Searches files using regular expressions with the
capabilities of the command line grep, egrep, and
fgrep.

Using Graphical Features in Shell Scripts
With the graphical features of the PTC MKS Toolkit, shell scripts can
take on a new level of sophistication. In this section we refine and
expand a simple KornShell script by including Windows specific
commands.

To show how these commands can improve your shell scripts, we’ll
start with the listit.ksh script described in “The if Conditional” on
page 36 and show how it can be improved by adding calls to

msgbox Displays a message box to prompt users and take
input.

start Starts a specified program in a new shell window.

filebox Displays a dialog box to search for and open files.

Graphical Features of the MKS KornShell

62 PTC MKS Toolkit

dlg Loads and manipulates Windows dialog boxes.

To refresh your memory, listit.ksh is a simple shell script intended
to give you as much information as possible about any name entered
on the command line as an argument. The original script was:

if test ! "$1"
then

echo "no positional parameters"
elif test -d $1
then

echo "$1 is a directory"
lc $1

elif test -f $1
then

echo "$1 is a file"
more $1

else
echo "$1 is just a string"

fi

msgbox msgbox informs users of important actions or conditions, and accepts
feedback on those conditions. Messages displayed by msgbox can
include predefined icons and buttons, as well as large amounts of
message text. Adding msgbox functionality to a KornShell command
line script transforms it into an interactive Windows program.

For complete details on the
options and syntax of msgbox,
see the msgbox reference page
in the online PTC MKS Toolkit
Utilities Reference.

With the original listit.ksh, if you enter the command

listit abcdef

and abcdef is neither a file nor a directory, the shell script returns:

abcdef is just a string

If we replace the command

echo "$1 is just a string"

with the msgbox command

msgbox -fqb ok -i information listit.ksh "$1 is just a
string. Please enter a directory or file name after
listit."

the shell script now returns something far more effective:

Using Graphical Features in Shell Scripts

Using the MKS KornShell 63

The following code sample show how you could modify listit.ksh to
return a message box wherever it previously returned a command
line string.

#Define button return values
OK=1
Cancel=2
Yes=6
No=7

#Test to ensure command line parameters are entered
if test ! "$1"
then

msgbox -fqb ok -i exclamation listit.ksh "You must
enter a positional parameter, otherwise listit.ksh
will fail. Try again."

#Test to check if parameter is a directory
elif test -d $1
then

msgbox -fqb okcancel -d1 -i information listit.ksh
"$1 is a directory. Do you want a listing printed to
your screen?"

case $? in
$OK) lc $1 ;;
$Cancel) exit ;;
esac

#Test to check if parameter is a file
elif test -f $1
then

msgbox -fqb okcancel -d1 -i information listit.ksh
"$1 is a file. Do you want to view it on your screen
now?"

case $? in
$OK) more $1 ;;
$Cancel) exit ;;
esac

else

Graphical Features of the MKS KornShell

64 PTC MKS Toolkit

msgbox -fqb ok -i information listit.ksh "$1 is
just a string. Please enter a directory or file name
after listit."
fi

start It’s equally easy to take advantage of Windows’ multi-windowing
features by including a call to the start command in your shell
script. start creates a new window and performs a specified action in
the new window before exiting—see the start reference page for a
complete description of option and syntax.

Let’s look at what happens in the previous example of listit.ksh when
the name that you enter as an argument is a file. For example, if you
enter

listit ulysses.txt

and ulysses.txt resides in the current directory, the script returns

If you click on OK, listit.ksh invokes the more command to display the
file, one page at a time. To let users edit ulysses.txt if they want,
instead of simply viewing it, you could replace the call to more with a
call to start a text editor in a new window with ulysses.txt loaded
and ready to edit. For example, instead of

then
msgbox -fqb okcancel -d1 -i question listit.ksh

"$1 is a file. Do you want to view it on your screen
now?"

case $? in
$OK) more $1 ;;
$Cancel) exit ;;
*) print "You must select either OK or Cancel."

esac
else

you could try something like this:

then
msgbox -fqb yesnocancel -d1 -i question listit.ksh

"$1 is a file. Click Yes to edit, No to View, or
Cancel to exit.”

Using Graphical Features in Shell Scripts

Using the MKS KornShell 65

case $? in
$Cancel) break ;;
$Yes) export EDITOR=${EDITOR:=viw}

start -x -t "This is a listit.ksh text editing
windows." $EDITOR $1 ;;

$No) more $1 ;;
esac

else

listit.ksh will now return.

filebox Now that you can pop up graphical messages and start separate
windows and programs from your KornShell script, it’s time to try
giving the user another option if the name entered on the command
line isn’t a file or directory. Currently, if you enter the command

listit abcdef

you are presented with a message box telling you that abcdef is just a
string, and that you should enter a directory or file name after
listit. The program then terminates, leaving you on your own to
locate the file name that you want.

For more information, see the
filebox reference page in the
online PTC MKS Toolkit
Utilities Reference.

With filebox you can offer users a choice. If the name that was
entered is not valid, a call to filebox invokes a file browser offering
users the opportunity to select a file from anywhere on their system.
For example, you could replace the previous else construct that
prompts for a name to be entered on the command line with a call to
filebox.

else
msgbox -fqb yesno -d1 -i question listit.ksh “$1

is just a string. Would you like to browse for a file
now?”

case $? in

$Yes) filename=$(filebox -amnt “Listit: Select a
file name.”)

if [$? -eq $Cancel]
then

exit

Graphical Features of the MKS KornShell

66 PTC MKS Toolkit

fi
msgbox -fqb yesno -d1 -i question listit.ksh “Would
you like to edit $filename now?”
case $? in
$Yes) start -x -t “This is a listit.ksh text editing
window.” viw $filename ;;
$No) exit ;;
esac ;;
$No) exit ;;
*) print “You must select a file name.”
esac
fi

In this case, when a you enter

listit abcdef

listit.ksh returns a message box telling you that abcedf is just a
sting and asking if you want to browse for a file. If you select No the
program terminates as before. If you select Yes, however, a file
browser appears

After you have selected a file, you are again presented with a
message box offering the choice of editing the file or exiting the
program.

Using Graphical Features in Shell Scripts

Using the MKS KornShell 67

The next code sample is an example of how an improved
listit.ksh might incorporate the new calls to msgbox, start, and
filebox:

#Define Button return values
OK=1
Cancel=2
Yes=6
No=7

#Test to ensure command line parameters are entered
if test ! "$1"
then

msgbox -fqb ok -i exclamation listit.ksh "You must
enter an argument, otherwise listit.ksh will fail. Try
again."

#Test to check if parameter is a directory
elif test -d $1
then

msgbox -fqb yesno -d1 -i information listit.ksh
"$1 is a directory. Do you want a listing printed to
your screen?"

case $? in
$Yes) dir=$(lc $1)

msgbox -fq "Your directory contains:" "$dir" ;;
$No) exit ;;
*)msgbox -fb ok Listit "You must select either Yes

or No."
esac

#Test to check if parameter is a file; use a call to
#start to allow editing
elif test -f $1
then

msgbox -fqb yesno -d1 -i information listit.ksh
"$1 is a file. Would you like to edit it with Vi for
Windows?"

case $? in
$Yes) start -x -t "This is a listit.ksh text editing
window." viw $1 ;;

$No) exit ;;
*) msgbox -fqb ok Listit "You must select either

Yes to edit $1 or No to exit."
esac

#If parameter is neither a file nor directory, use a
#call to filebox to allow file selection
else

Graphical Features of the MKS KornShell

68 PTC MKS Toolkit

msgbox -fqb yesno -d1 -i question listit.ksh "$1
is just a string. Would you like to browse for a file
now?"

case $? in
$Yes) filename=$(filebox -amnt "Listit: Select a

file name.")
if [$? -eq $Cancel]
then

exit
fi
msgbox -fqb yesno -d1 -i question listit.ksh

"Would you like to edit $filename now?"
case $? in
$Yes) start -x -t "This is a listit.ksh text

editing window." viw $filename ;;
$No) exit ;;
*) msgbox -fqb ok Listit "You must select a

file name."
esac ;;

$No) exit
esac
fi

dlg With the graphical features of the MKS KornShell your shell scripts
are no longer limited to the command line. Now you can use
commands like msgbox, start, and filebox to can make your shell
scripts look and act like programs written in far more complex
languages.

dlg takes you to the next level of interactive graphical KornShell
scripting. dlg (for “dialog”) is an MKS KornShell function that lets
you read and modify Windows dialog boxes. Whether you are
designing new dialogs or manipulating existing ones, dlg is an
effective alternative to the often complex Windows programming
languages.

Basic Structure
of dlg Shell
Scripts

dlg shell scripts usually follow a structure similar to

#Load the dialog
dlg load module dialogid

#Start a loop to read events from the dialog
while dlg event msg ctrl
do

#Read events, manage controls, get or change text
dlg keyword [-d dlg] [-c control] [-i index] [result]

Using Graphical Features in Shell Scripts

Using the MKS KornShell 69

#Terminate the loop and close the dialog
done
dlg close [-d dlg]

While there are many variations, the basic structure can be found in
most dlg scripts. You need to load a dialog box before you can
manage it, read the output from event to determine user actions, and
close the dialog box when you’re done.

dlg Examples The examples in this section use some of the basic dlg commands to
generate a simple Windows program from listit.ksh.

There are many useful dlg
commands that this document
does not touch upon; see the
dlg reference page in the
online PTC MKS Toolkit
Utilities Reference for complete
details on dlg commands.

list settext enabled load
event gettext clear addtext
getcursel winhelp close

For examples of more complex shell scripts that employ many other
dlg commands, examine the code in autorun.ksh, gdir.ksh,
ghist.ksh, gps.ksh, or ugrep.ksh installed in your ROOTDIR/mksnt
directory.

Since you need access to a dialog editor to create new dialogs (and
not everyone has a programs like Microsoft C++ that includes a
dialog editor), the following example works under the premise that
you will be modifying an existing dialog. Sophisticated
programmers, however, will probably want to create their own dialog
boxes to meet the explicit needs of each particular dlg shell script; if
you have created your own dialog you may want to skip the
preliminary sections of this tutorial and start with “dlg event” on
page 73.

dlg list
To turn listit.ksh into a Windows program we’ll use one of the
sample dialogs located in your ROOTDIR/samples/dlg directory. The
file sample1.res contains four generic dialogs which you can use to
get a feel for dlg.

To start with, we must determine what sample1.res contains. To
display the contents of any 32-bit file containing standard dialogs,
use the dlg list command. For example,

dlg list sample1.res

will display

COMBO_SAMPLE
EDIT_SAMPLE
LIST_SAMPLE

Graphical Features of the MKS KornShell

70 PTC MKS Toolkit

LISTVIEW_SAMPLE

Note Dialogs are often named with a number rather than a text string,
but in this case we wanted to make identification as easy as possible.

To display the internal components of a specific dialog, use list
again but this time include the dialog name. The command

dlg list sample1.res LIST_SAMPLE

will disassemble LIST_SAMPLE into a resource compiler format
describing all controls, their control number, and their position
within the dialog box. Most of the information returned from dlg
list is of little use unless you are coding and linking the dialog
yourself, but it does tell you exactly what controls are present. If you
create your own dialog with a dialog editor, you won’t need to use
the information from dlg list.If you load the sample dialog with the
dlg load command, you will see something similar to

The dialog box contains five button controls (labeled OK, Cancel, and
Button), as well as a radio button, a check box and a combo box
control.

Using Graphical Features in Shell Scripts

Using the MKS KornShell 71

dlg settext
Obviously, you can’t use this dialog “as is”; the generic control labels
give no indication of what function each control performs. First we
need to determine just what listit.ksh should do. At minimum it
should do everything that the command line version of listit.ksh
does:

 Let users select a file from anywhere on their system

 Display information about the current directory

 Let users edit the file if they want

To make the dialog “user friendly” you will need to alter the text on
some of the buttons with the dlg settext command. settext
changes existing dialog text to the string you specify.You could start
the new listit.ksh with something like

#Define your controls
Select=1001
Edit=1002
DirList=1003
Help=106
Cancel=105
List=103

#Load the dialog and center it on the screen
dlg load -x -1 -y -1 sample1.res LIST_SAMPLE

#Change the title text on the dialog
dlg settext “Listit: A Small Sample of dlg Shell

Scripting”

#Change the text on buttons
dlg settext -c $Select “Select File”
dlg settext -c $Edit “Edit File”
dlg settext -c $DirList “Directory Listing”
dlg settext -c $Help “Help”

Note Each dialog must be “loaded” before you can use it in any
way. If you try to use dlg commands without first loading the dialog,
an error will occur.

Notice how dlg settext without a -c control option changes the title
text of the dialog box, whereas if you specify a control settext
operates only on that control.

Graphical Features of the MKS KornShell

72 PTC MKS Toolkit

dlg settext works equally well for static text fields and other titles
within the loaded dialog. The next step is to change the static text title
from Static Text Box to something more descriptive:

#Change the static text into a title
dlg settext -c 1004 “Selected Files”

dlg enabled
In the next phase of our dialog box face-lift, we’ll “gray out” the
unused check box and radio button. dlg enabled allows you to
remove or reinstate the functionality of any given control in a loaded
dialog box. For our purposes, we’ll simply gray out the checkbox and
radio button and leave them that way.

"Gray out" unnecessary radio button and check box,
and change their text labels to tell users that
they are unavailable
dlg settext -c 102 "Not available"
dlg enabled -c 102 0
dlg settext -c 105 "Not available"
dlg enabled -c 105 0

If you load the LIST_SAMPLE dialog box with the settext and
enabled changes, it will now look more the way we want.

Using Graphical Features in Shell Scripts

Using the MKS KornShell 73

dlg event
Now that the dialog box appears as it should, we need to associate
the proper action with each control. The first thing is to make sure
that any user actions are properly read into the shell script. dlg event
returns both the control identifier and the associated message for
each user action. For example,

while dlg event msg ctrl
do

echo $msg $ctrl
done

would print a message and control number to standard output for
each user action. If the user clicks on Select File, the shell script would
print

command 1001

For more details on while
loops, see “The while Loop”
on page 38.

The return values from dlg event are what allows your program to
interpret user actions. Unless your program is in a while loop
reading the results of dlg event, user actions will not be recognized.

dlg gettext
One of the fundamental functions of listit.ksh is to let users select a file
from anywhere on their system. To accomplish this with dlg, you
could replace the while loop with a gettext call to read the contents
of the list box control.

In the next example code, dlg gettext is used to read the contents of
the list box control. You can also use gettext to return the associated
text string from any control in a loaded dialog. This example

 Tests the output of gettext to determine if there is already text in
the list box

 Uses dlg clear to remove the contents

 Presents a file browser to select new files

Graphical Features of the MKS KornShell

74 PTC MKS Toolkit

Once files have been selected, dlg addtext is used to add the selected
file names to the contents of the list box—the while read filename
construct ensures that file names are added one line at a time rather
than strung together.

#Start while loop
while dlg event msg ctrl
do

#Read the ctrl results of dlg event
case $ctrl in
$Select)

dlg gettext -c $List seltext
if test -n "$seltext"
then

dlg clear -c $List
files_selected=0
f=$(filebox -amnt "Listit")
while read filename
do

dlg addtext -c $List $filename
files_selected=1

done <<EOF
$f
EOF

if [files_selected = 0]
then
msgbox -fq Listit "No files selected"
fi

else
files_selected=0
f=$(filebox -amnt "Listit")
while read filename
do

dlg addtext -c $List $filename
files_selected=1

done <<EOF
$f
EOF

if [files_selected = 0]
then

msgbox -fq Listit "No files selected"
fi

fi ;;
esac

done

Using Graphical Features in Shell Scripts

Using the MKS KornShell 75

dlg getcursel
Once users can select files, we need to let them use the Edit Files
button. The dlg getcursel command lets you determine which item
in the list box control is selected at any given time. getcursel returns
an integer representing the list position of current selection, or -1 if no
item is selected.

In the next example, the output from getcursel is stored in the
variable cursel, and tested to ensure a selection has been made.

$Edit) dlg getcursel -c $List cursel
if test "$cursel" -lt 0
then

msgbox -fq -i information Listit "No files selected"
else

dlg gettext -c $List -i $cursel seltext
export EDITOR=${EDITOR:=viw}
start -x $EDITOR "$seltext"

fi

dlg winhelp
The remaining button controls (Help, Directory Listing, and Cancel)
can be activated with relatively simple shell constructs. Use the dlg
winhelp command to make the Help button display a Windows Help
file. winhelp is a special dlg command which allows you to call a
help file that operates independently of the current shell, so that you
can invoke Windows Help and leave it displayed while you continue
to use other commands.

You can specify a dlg winhelp -C context-id option to open the
Windows Help file at a predetermined location. For this example,
however, we simply open viw.hlp to the default Contents screen.

case $ctrl in
$Help) dlg winhelp $ROOTDIR/mksnt/viw.hlp
esac

To display a directory listing use the same construct shown in the
previous listit.ksh

$case $ctrl in
DirList) dir=$(lc)

msgbox -fq “Your current directory contains:” “$dir”
esac

Graphical Features of the MKS KornShell

76 PTC MKS Toolkit

dlg close
Finally, to close the dialog box users can click Cancel. You must
explicitly terminate the dialog with a dlg close command.

case $ctrl in
$Cancel) break
esac

done
dlg close

The next code sample is an example of what our program looks like
with all changes in place. This file is available as listit.ksh in the
ROOTDIR/samples/dlg directory.

Note The ResFile=$(whence $0)specification is an example of how
to call a resource that is contained in the current KornShell script. The
encoded resource file, however, has been omitted from this code.

For details of how to bind a
resource file into your shell
script, see “bindres” on
page 78 or the online bindres
reference page.

#Define the controls
Select=1001
Edit=1002
DirList=1003
Help=106
Cancel=107
List=103

#Tell dlg that the .res file is located in the current
#file
ResFile=$(whence $0)

#Load and center the dialog
dlg load -x -1 -y -1 $ResFile LIST_SAMPLE

#Change the title text on the dialog
dlg settext "Listit: A Small Sample of dlg Shell
Scripting"

#Change the text on buttons
dlg settext -c $Select "Select File"
dlg settext -c $Edit "Edit File"
dlg settext -c $DirList "Directory Listing"
dlg settext -c $Help "Help"

#Change the static text above the listbox control into
#a title
dlg settext -c 1004 "Selected Files"

Using Graphical Features in Shell Scripts

Using the MKS KornShell 77

#"Gray out" the unnecessary controls and change their
#text to tell users they're unavailable
dlg enabled -c 102 0
dlg settext -c 102 "Not available"
dlg enabled -c 105 0
dlg settext -c 105 "Not available"

#Start the "while" loop to read user action
while dlg event msg ctrl
do
case $ctrl in

$Select)
dlg gettext -c $List seltext
if

test -n "$seltext"
then
dlg clear -c $List

files_selected=0
f=$(filebox -amnt "Listit")
while read filename
do

dlg addtext -c $List $filename
files_selected=1

done <<EOF
$f
EOF

if [files_selected = 0]
then

msgbox -x "No files selected"
fi

else
files_selected=0
f=$(filebox -amnt "Listit")
while read filename
do

dlg addtext -c $List $filename
files_selected=1

done <<EOF
$f
EOF

if [files_selected = 0]
then

msgbox -fq -i information Listit "No
files selected"

fi
fi ;;

$Edit) dlg getcursel -c $List cursel

Graphical Features of the MKS KornShell

78 PTC MKS Toolkit

if test "$cursel" -lt 0
then
msgbox -fq -i information Listit "No files

selected"
else

dlg gettext -c $List -i $cursel seltext
export EDITOR=${EDITOR:=viw}
start -x $EDITOR "$seltext"
fi ;;

$DirList) dir=$(lc)
msgbox -fq "Your directory contains:"

"$dir" ;;
$Help) dlg winhelp $ROOTDIR/mksnt/toolkit.hlp

;;
$Cancel) break ; dlg close

esac
done

bindres To convert your shell script to a self contained executable, use the
bindres program to “bind” the resource from sample1.res into
listit.ksh. Once your dialog resource is bound into the KornShell
file, the executable can be transferred and run on any system with
PTC MKS Toolkit installed—without the necessity of any related files.

bindres can be used to incorporate any .bmp, .cur, .ico, or .res file
into any text file. When a resource file is bound into another file with
bindres, the file is encoded and appended to the end of the existing
code. To bind sample1.res into listit.ksh, use the command

bindres listit.ksh sample1.res

Note that bindres encodes the entire sample1.res file and inserts it
at the end of listit.ksh, so you end up with all four dialogs from
sample1.res in your KornShell file. You can either leave the
extraneous dialog code in your script (it won’t hurt anything, but
does tend to make the script appear more complex than necessary), or
simply delete it.

If you use bindres on a file that already contains a bound resource
file, the new output of bindres is inserted between the original code
and the previous encoded resource file. For example, if you add the
sh.ico icon into listit.ksh so that you can invoke it from the
Windows Explorer, the encoded sh.ico resource file would be
inserted after the shell script code but before the previous encoded
bitmap.

To include the encoded KornShell icon in listit.ksh, use the command

bindres listit.ksh $ROOTDIR/mksnt/sh.ico

Using Graphical Features in Shell Scripts

Using the MKS KornShell 79

toolbar Under Windows 95/98/Me, you have the added capability of
controlling your KornShell toolbar with the tb command.

For more information on
adding bitmaps and toolbar
buttons from the command
line, see the tb reference page
in the online PTC MKS Toolkit
Utilities Reference.

To add a button to the Windows 95/98/Me KornShell console
toolbar, you can either use one of the standard bitmaps already
available to you, or create your own bitmap. If you create your own
bitmap you must add it to the available pool of bitmaps.

tb bitmap 16x16.bmp 24x24.bmp i

To use one of the standard Windows toolbar bitmaps for your
program, double click the KornShell toolbar. A Customize Toolbar
dialog box appears displaying the available buttons and the current
non-standard toolbar buttons. Double click any available button to
invoke the Customize Button dialog box, where you can enter the
command name and associated tool tip text.

To create your own bitmaps for new buttons on the toolbar, use a
drawing program like Windows’ Paint, and save the file as both a
16x16 bitmap and a 24x24 bitmap.
If you are currently running a program in the shell, any program
invoked by clicking a toolbar button will not be run until the current
program is finished.

Graphical Features of the MKS KornShell

80 PTC MKS Toolkit

Using the MKS KornShell 81

Index

Symbols
.profile 8
$- 58
$? 58
$@ 57
$* 57
$# 57

A
alias 5, 44
Aliases 11–13

Customizing 43
in profile.ksh 12
Quoting 45
Turning Off an Alias 44

Aliases, setting with gvar 60
allexport 46
autorun 61
autorun.ksh 8

B
backslash 3
backslashes 13
bindres 59, 78

C
Calculations with Variables 28
cmd.exe 4, 9, 25, 38
Combining Commands 17–22

Command Substitution 18
Multiple Commands 17
Pipes 17
Search Rules 20

The whence Command 22
Combining Control Structures 40
Command editors 49–51

Asking for the EMACS Command Editor 51
Asking for the vi Command Editor 50
Using a Command Editor 51

Command History 14–16
Editing Commands from the History File 15

command interpreters 1, 25
Command Substitution 18
command.com 3, 4, 9, 13, 25, 38
Commands

alias 13
autorun 61
bindres 59
dlg 59, 68–78
fc 15
filebox 59, 65–68
find 19
gdir 61
ghist 61
gps 61
gset 50, 60
gvar 59
history 14
let 28
msgbox 59, 62–64
Multiple 17
popd 61
pushd 61
r 14, 15
set 46
sh -L 8
start 59, 64–65
Substitution 18
tb 79
test 34

Index

82 PTC MKS Toolkit

ugrep 61
unalias 44
whence 22

Compare the age of two files 34
Compare the values of two numbers 35
Compare two strings 35
Control Structures 34–40
Customization 43–48

Aliases 43–44
ENV Variable 47
Prompts 45
Setting Options 46
Turning Off an Alias 44

D
date 38
del 4
dir 4
Displaying Shell Variables 27
dlg 59, 68–78

close 76
enabled 72
event 73
getcursel 75
gettext 73
list 69
settext 71
winhelp 75

dlg Example 69
dlg load 70
Double Backslashes 13
double quotes 34

E
Editing Commands from the History File 15
Editing Mode, setting with gset 60
egrep 43
EMACS 51
empty strings 35
ENV 47
Environment Variable Options, with gset 60
Environment Variables

ENV 47
HOME 26
PS1 45

Examine the nature of files 34

Examples
alias 44
aliases 11–13
bindres 78
Calculations with Variables 28–29
calls to the native command interpreter 5
Compare the age of two files 34
Compare the values of two numbers 35
Compare two strings 35
Customizing Aliases 43–44
Customizing prompts 45
date 38
dlg 68–78
dlg close 76
dlg enabled 72
dlg event 73
dlg getcursel 75
dlg list 69
dlg load 70
dlg settext 71
dlg winhelp 75
echo 27, 55
Editing the command line with vi 50
egrep 43
ENV 47
Examining the nature of files 34
export 29–30
fgrep 18, 33
fi 36
filebox 65–68
find 19, 40
for Loop 39–40
Functions 41
history 14, 18
if Conditional 36–38
let 28
msgbox 62–64
Multiple Commands 17
Parameter expansion 54–55
PATH 20
Pipes 17
Positional parameters 32
Quotes in Shell Scripts 33
r 15
Returning Values from a Function 42
Search Rules 20
Setting Options 46
Shell Scripts 24

Index

Using the MKS KornShell 83

Shell Variables 26–27
special characters 11
Special Parameters 57
start 64–65
tb 79
test 34
Test whether strings are empty 35
Tilde expansion 53–54
typeset 30–31
unalias 44
Variable expansion 54–55
whence 22
while Loop 38–39
wild cards 10

Execute Trace 60
exit 8
Exporting Variables 29–30

F
fc 15
fgrep 18
fi 36
filebox 59, 65–68
Files

.bat 21, 25

.cmd 21, 25

.com 21

.exe 21

.obj 33

.profile 8

.sh_history 14
autorun.ksh 8
ksh 21
listit.ksh 38, 71
profile.ksh 8

find 19
for Loop 39–40
Functions 41
Functions, displaying with gvar 60

G
gdir 61
gettext 73
ghist 61
gps 61
gset 50, 60

gvar 12, 27, 59

H
history 14, 18
History, setting with gset 60
HOME 26

I
if Conditional 36–38

K
KornShell 1

L
let 28
listit.ksh 38, 71

M
Message Options, setting with gset 60
Modified Parameter and Variable Expansion 54
msgbox 59, 62–64
Multiple Commands 17

N
noclobber 47
noglob 47

P
Parameter expansion 54
Parameters, special 57
PATH 21
Persistence, setting with gset 60
Pipes 17
popd 61
Positional Parameters 32–33
Positional Parameters, setting with gvar 59
profile.ksh 8
prompt 7
Prompt, setting with gset 60
Prompts 45

Index

84 PTC MKS Toolkit

PS1 45
pushd 61

Q
Quotes in Shell Scripts 33

R
r 14
Returning Values from a Function 42
Running a Shell Script 24

S
Search Rules 20
set 46
settext 71
Setting Options 46
sh -L 8
Shell Scripts 23–42

A Sample Shell Script 24
and Command Interpreters 25
Calculations with Variables 28
Combining Control Structures 40
Control Structures 34–40
Displaying Shell Variables 27
Exporting Variables 29–30
for Loop 39–40
Functions 41
if Conditional 36–38
Positional Parameters 32–33
Quotes in Shell Scripts 33
Returning Values from a Function 42
Running a Shell Script 24
Shell Variables 26
Testing Conditions 34
Variable Attributes 30–31
while Loop 38–39

Shell Variables 26
shells 1
single quotes 34
slash 3
Slash vs. Backslash 3–4
Special Characters 11
Special Parameters 57–58

$- 58

$? 58
$@ 57
$* 57
$# 57

start 59, 64–65
Starting the Shell

Leaving the Shell 8
Profile Files 7–8
The Simple Way 7

String Matching Modifiers 56–57

T
tb 79
test 34
Test whether strings are empty 35
Testing Conditions 34
Tilde Expansion 53
Toolbar, modifying with tb 79
Turning Off an Alias 44
type 4

U
ugrep 61
unalias 44
UNIX 1
User Settings, with gset 60

V
Variable Attributes 30–31
Variable expansion 54
Variables, Shell 26
Variables,setting with gvar 59
verbose 47
Verbose Echo 60
vi 50

W
whence 22
while Loop 38–39
Wild Card Characters 9
Wild Cards

String Matching Modifiers 56–57
Windows Registry Database 8

