
PTC MKS Toolkit
Basics of the PTC MKS Toolkit

PTC Inc.



PTC MKS Toolkit: Basics of the PTC MKS Toolkit

Copyright © 2020 PTC Inc. and/or Its Subsidiary Companies. All Rights 
Reserved.

User and training guides and related documentation from PTC Inc. and its subsidiary 
companies (collectively "PTC") are subject to the copyright laws of the United States and 
other countries and are provided under a license agreement that restricts copying, 
disclosure, and use of such documentation. PTC hereby grants to the licensed software 
user the right to make copies in printed form of this documentation if provided on 
software media, but only for internal/personal use and in accordance with the license 
agreement under which the applicable software is licensed. Any copy made shall include 
the PTC copyright notice and any other proprietary notice provided by PTC. Training 
materials may not be copied without the express written consent of PTC. This 
documentation may not be disclosed, transferred, modified, or reduced to any form, 
including electronic media, or transmitted or made publicly available by any means 
without the prior written consent of PTC and no authorization is granted to make copies 
for such purposes. Information described herein is furnished for general information only, 
is subject to change without notice, and should not be construed as a warranty or 
commitment by PTC. PTC assumes no responsibility or liability for any errors or 
inaccuracies that may appear in this document.

The software described in this document is provided under written license agreement, 
contains valuable trade secrets and proprietary information, and is protected by the 
copyright laws of the United States and other countries. It may not be copied or distributed 
in any form or medium, disclosed to third parties, or used in any manner not provided for 
in the software licenses agreement except with written prior approval from PTC.

UNAUTHORIZED USE OF SOFTWARE OR ITS DOCUMENTATION CAN RESULT 
IN CIVIL DAMAGES AND CRIMINAL PROSECUTION.

PTC regards software piracy as the crime it is, and we view offenders accordingly. We do 
not tolerate the piracy of PTC software products, and we pursue (both civilly and 
criminally) those who do so using all legal means available, including public and private 
surveillance resources. As part of these efforts, PTC uses data monitoring and scouring 
technologies to obtain and transmit data on users of illegal copies of our software. This 
data collection is not performed on users of legally licensed software from PTC and its 



Basics of the PTC MKS Toolkit iii

authorized distributors. If you are using an illegal copy of our software and do not consent 
to the collection and transmission of such data (including to the United States), cease 
using the illegal version, and contact PTC to obtain a legally licensed copy.

Important Copyright, Trademark, Patent, and Licensing Information: See the About 
Box, or copyright notice, of your PTC software.

UNITED STATES GOVERNMENT RIGHTS

PTC software products and software documentation are “commercial items” as that term 
is defined at 48 C.F.R. 2.101. Pursuant to Federal Acquisition Regulation (FAR) 12.212 
(a)-(b) (Computer Software) (MAY 2014) for civilian agencies or the Defense Federal 
Acquisition Regulation Supplement (DFARS) at 227.7202-1(a) (Policy) and 227.7202-3 
(a) (Rights in commercial computer software or commercial computer software 
documentation) (FEB 2014) for the Department of Defense, PTC software products and 
software documentation are provided to the U.S. Government under the PTC commercial 
license agreement. Use, duplication or disclosure by the U.S. Government is subject solely 
to the terms and conditions set forth in the applicable PTC software license agreement.

PTC Inc., 121 Seaport Blvd, Boston, MA 02210 USA

PTC Inc.
12015 Lee Jackson Memorial Hwy,

Suite 150
Fairfax, Virginia 22033

Phone: +1 703 803-3343
Fax: +1 703 803-3344

E-mail: MKSToolkitInfo@ptc.com

10.3-1000



iv PTC MKS Toolkit

Technical Support
To request technical support, please contact us on the PTC eSupport Portal below. In your request please 
include your Service Contract Number (SCN), the name and version number of the product, your serial 
number, and the operating system and version/patch level that you are using. Contact PTC Technical 
Support at:

Technical Support: http://support.ptc.com/

When reporting problems, please provide a test case and test procedure, if possible. If you are following up 
on a previously reported problem, please include the case number in the subject line of your correspondence.

Finally, please give us your e-mail address and telephone number so that we may contact you.



Basics of the PTC MKS Toolkit v

Table of Contents

Technical Support ..................................................................................iv

1 Introduction...............................................................1

2 General Purpose Tools ............................................3

Listing a Directory ..................................................................................3
Simple File Manipulation .......................................................................4

cp .....................................................................................................4
rm.....................................................................................................5
mv ....................................................................................................5

Disk Usage..............................................................................................5
df ......................................................................................................6
du .....................................................................................................6

Displaying Data ......................................................................................6
cat.....................................................................................................6
pg .....................................................................................................6

Options....................................................................................................7
Help with Options............................................................................8

Redirection..............................................................................................9
Pipes......................................................................................................10
Wild Card Characters............................................................................10

3 Text Processing......................................................13

Editors ...................................................................................................13
The vi Screen Editor ......................................................................13
Line Editors ...................................................................................13
The sed Stream Editor ...................................................................14

Other Word Processing Commands......................................................14
Creating Banners ...........................................................................14
Columnation ..................................................................................15
Document Size...............................................................................15

4 Record-Keeping......................................................17

Sorting Records.....................................................................................18
Creating Sub-Lists ................................................................................20

Patterns ..........................................................................................21
Differences Between grep & egrep................................................23

Finding Changes to a File .....................................................................23



vi PTC MKS Toolkit

Checking Whole Directories .........................................................25
Other Simple Commands......................................................................25

5 Programming ..........................................................27

Editing and Record Keeping.................................................................27
Timing Programs ..................................................................................28
Creating Symbol Tables........................................................................29
Examining Symbol Tables....................................................................29
Miscellaneous Commands ....................................................................30

Index ........................................................................31



Basics of the PTC MKS Toolkit 1

1Introduction

In this chapter, we introduce PTC MKS Toolkit and show how it can help 
you use your system more productively. There are well over 300 commands 
in the PTC MKS Toolkit and we don't have the space to do justice to them 
all; we will, however, draw your attention to some of the most commonly 
used commands. As we do this, we'll also present enough background 
information so that you'll find it easy to understand the full set of reference 
pages in the PTC MKS Toolkit Utilities Reference.

This overview is split into sections covering general purpose tools, text 
processing, record keeping, programming, and so on. These sections are 
mostly independent, though most people will find it convenient to go 
through the sections in the order presented.

We assume that you are familiar with the basic concepts of your operating 
system (for example, what we mean when we talk about the current 
directory). We also assume that you are working through the exercises on 
your computer as you read through them here—try the commands as we 
describe them, then experiment and play with different command structures 
to find out how to make the most of your PTC MKS Toolkit.



Introduction

2 PTC MKS Toolkit



Basics of the PTC MKS Toolkit 3

2General Purpose Tools

For information on all PTC MKS 
Toolkit commands, see the online 
PTC MKS Toolkit Utilities 
Reference. For more information 
on MKS KornShell, MKS AWK, 
and MKS MAKE, see their 
respective online documents.

To begin our overview, we’ll examine some of the simplest commands in 
PTC MKS Toolkit, commands that copy or print various kinds of 
information. Try these examples on your computer as you read them, and we 
encourage you to try any variations that come to mind. 

Listing a Directory
The ls and lc commands list the contents of a directory, much as the 
Windows (in command.com or cmd.exe) dir command does. You can 
enter either

ls

or
lc

to list your current working directory. To list the contents of a different 
directory, add the relative or absolute name of the directory you want to look 
at, as in 

lc dira/dirb
lc c:abc/def/ghi

You might wonder why you should bother using ls or lc if the dir 
command displays the same information; the answer is the way in which that 
information is displayed. By default, dir prints an unsorted list in one long 
column that quickly runs off the end of the screen. ls does much the same 



General Purpose Tools

4 PTC MKS Toolkit

thing, but sorts the list in alphabetical order... a definite improvement. lc 
displays the names in alphabetical order too, but uses a much more compact 
format. For example, typical output from lc looks like this: 

Directories:
cc          bin         etc         mks         text 
Files:
csrb.cpy    filelist    phones.com  temp.t 
Read-Only:
ibmbio.com  ibmdos.com

Notice how directories are separated from files, and how files with special 
characteristics are separated from normal files.

As you can see, the default output from lc is much easier to read than the 
default output from dir. Since lc shows five names per line, it can display 
five times the number of names on your screen. You’ll be surprised at how 
quickly you will come to appreciate the convenience of lc over dir: the 
information you most commonly want is provided in a greatly improved 
format.

lc can also list the contents of more than one directory at a time. For 
example,

lc dir1 dir2

lists the contents of the two given directories, one after the other. Try this 
command on a pair of directories to see what format is displayed. Also, try 
the same sort of thing with ls. 

Simple File Manipulation
As you’ll see, lc is not the only PTC MKS Toolkit command that improves 
on an existing Windows command. Many of our commands are easier to use 
and more powerful than the commands you are used to.

cp cp is similar, though superior, to the standard copy command. cp copies one 
or more files to a new location. For example,

cp file1 file2

copies the contents of file1 into file2 , just as copy does. In addition, cp lets 
you enter

cp file1 file2 file3... directory



Disk Usage

Basics of the PTC MKS Toolkit 5

to copy a list of files into files of the same name under the given directory. 
For example,

cp dir1/a dir2/b dir3

copies two files into the directory called dir3. The base names of the copied 
files will be the same as the originals, so you will get dir3/a and dir3/b. 

rm The PTC MKS Toolkit rm command can be used in place of the standard 
del command. rm can delete or remove several files at once. For example,

rm file1 file2 file3 ...

removes all the specified files (unlike the del command, which can only 
delete one file or set of files at a time).

mv The mv command is used to move or rename files. For example,
mv file1 file2

moves the contents of file1 to file2 and deletes file1. This has a similar effect 
to:

cp file1 file2
rm file1

except that, where possible, the file is renamed rather than being copied. The 
files file1 and file2 do not have to be in the same directory, or even on the 
same device. 

The mv command can move several files from one place to another.

For example,
mv file1 file2 file3... directory

moves all the given files to directory.

Disk Usage
When a command like dir displays how much free space there is on a disk, 
it tells you how many bytes (characters) are available. However, the system 
does not allocate disk space in bytes: it uses disk blocks. A block consists of 
512 consecutive bytes. When space is measured in blocks, the numbers are 
smaller and easier to understand. The df and du commands list disk usage 
information in terms of blocks.



General Purpose Tools

6 PTC MKS Toolkit

df You can use df to display the amount of free disk space on the device that 
contains your current working directory. The output of df might look like 

 C:         (C:/) 1952/16936

The C: at the beginning of the line stands for your current working directory. 
After this comes the name of the device that holds this directory (in this case, 
C:), then two numbers separated by a slash. The first number tells how many 
unused blocks the device has; the second gives the total number of blocks on 
the device.

If you specify a directory, df displays the free space remaining on the device 
that contains the given directory. You can also give a specific device name, 
as in 

df a:

du The du (disk usage) command displays how many blocks are used by a 
given directory and its subdirectories. du lists the number of disk blocks 
used by each directory under your current working directory, plus the total 
number of blocks occupied by your current working directory. Because this 
information is given in blocks, numbers are smaller and easier to compare.

You can also specify a directory name to du to display the space used by that 
directory and all its contents.

Displaying Data
The PTC MKS Toolkit cat and pg commands let you view the contents of 
any file for which you have read permission.

cat The cat command displays the contents of one or more files. For example,
cat file1 file2 file3...

displays the contents of file1, then file2, and so on. cat does not pause at any 
point unless you press CTRL-S (or the PAUSE key, if your keyboard has 
one). After pausing with CTRL-S, you can resume printing by pressing 
CTRL-Q.

pg To make it easier for you to read large files, the PTC MKS Toolkit also 
supplies the pg command.

pg displays the contents of files, pausing at the end of each screen to give 
you a chance to read the display.



Options

Basics of the PTC MKS Toolkit 7

For example,
pg file1 file2 file3...

displays the contents of the given files, just as cat does. However, after pg 
has displayed a screenful of text, it stops. When you have read what is on the 
screen, you can press the ENTER key to get the next screenful of text. In this 
way, you can read several files one page at a time.

Use pg to display the contents of any text file. You will notice that when pg 
pauses, it prints a colon (:) at the bottom of the screen. This is called a 
prompt. It indicates that pg is waiting for you to do something (that is, press 
the ENTER key).

Options
Most of the commands we have discussed so far accept options which 
modify and expand their primary function. Toolkit options are specified by a 
hyphen or minus sign (-) followed by a single character. For example,

lc -d

lists only the directories found under your current working directory.
lc -f

lists only the files found under your current working directory. Options 
consisting of a minus sign followed by a character are called simple options. 

Simple options are specified after the name of the command and before any 
other arguments for the command (that is, arguments that are not options). 
For example, you would say

lc -d dir1

to list the directories under dir1. The order is important. If you say
lc dir1 -d

lc lists the contents of dir1 and then try to list the contents of a directory 
called -d. 

As a special notation, most PTC MKS Toolkit commands let you specify -- 
to separate the options from the non-option arguments; -- says, `There are 
no more options'. Therefore, if you really do have a directory named -d and 
want to list its contents, you could say

lc -- -d



General Purpose Tools

8 PTC MKS Toolkit

With the PTC MKS Toolkit, you can specify more than one simple option to 
a command. For example, -c and -n are both simple options that can be 
specified with the pg command. You could say

pg -c -n file

or you could combine the two options into
pg -cn file

The order of combined options is not important;
pg -nc file

is equivalent to the previous version of the command.

In addition to simple options, some commands accept options that have 
accompanying values. Such options look like simple options followed by 
additional information. This information may be a number, a string, the 
name of a file, or something else.

If you read the pg reference page in the online PTC MKS Toolkit Utilities 
Reference, you can see that pg accepts an option of the form

-p prompt

When the reference pages show part of a command line in italics, the 
italicized material is just a placeholder; when you actually use the command, 
you should fill in something else in its place. In this case, the prompt should 
be a string of characters, enclosed in single quotes. For example, in the 
command

pg -p 'More?' file

the prompt string is More? If you execute the above command, you can see 
that pg prints out

More?

when it pauses at the end of a screen, instead of the usual :. In other words, 
the -p prompt option lets you set pg's prompt. 

Help with 
Options

The help command lists information about PTC MKS Toolkit commands.

Specify the name of the command to help as:
help command

where command is the name of the command you want to look up. For 
example,

help lc

summarizes the format and options of the lc command. If you just say
help



Redirection

Basics of the PTC MKS Toolkit 9

you get a summary of help itself.

The information provided by help serves as a memory aid for people who 
have already read the command’s reference page in the PTC MKS Toolkit 
Utilities Reference. help is not a replacement for the reference pages.

Redirection
Most of the commands we have discussed so far display information on your 
screen. You can save this information in a file instead, by typing

>filename

on the end of any command. For example,
cat file1 file2 file3 >xxx

writes the contents of the three files into another file called xxx. As a result, 
all the information in the original three files is concatenated into a single file.

Using >filename is called "redirecting output". The output from a command 
is redirected from the screen to a file. 

When you redirect output with >filename, the output writes over any 
information that the file already contains. If you want to keep the file's 
current contents, you can enter 

>>filename

instead. This appends command output on the end of whatever the file 
contains already. For example,

cat file1 file2 >>file3

appends the contents of file1 and file2 to the contents of file3. In this 
way, file3 would consist of its original contents, followed by the contents 
of file1, followed by the contents of file2.

If you use either > or >> to 
redirect output into a file that 
does not already exist, the file 
will be created automatically. 

You can redirect input in much the same way that you redirect output. For 
example, the ed command is a text editor that reads commands typed by the 
user from the keyboard. However, if you type something like:

ed textfile <script

ed will edit textfile using an editing session which is determined by the 
contents of script rather than user input from the keyboard. 



General Purpose Tools

10 PTC MKS Toolkit

Pipes
PTC MKS Toolkit supports the concept of a pipe, just like UNIX.

A pipe is a mechanism for providing the output from one command to be the 
input to another command. A sequence of two or more commands connected 
by pipes is called a pipeline.

The symbol for a pipe is the or-bar (|). Consider, the command
cat file1 file2 | pg

This establishes a pipe between a cat command and a pg command. The 
output of cat is sent through the pipe as input to pg. As a result, pg displays 
the contents of the files that cat concatenates.

This is a common use of pipes: whenever a command (like cat) produces a 
large amount of output, you can pipe the output through pg so you can `page' 
through the information produced. For example,

lc | pg

is useful if lc produces more than a screenful of output.

By joining several Toolkit commands with pipes, you can perform quite 
intricate tasks. We'll see this in later sections.

Wild Card Characters
Like standard Windows commands, the PTC MKS Toolkit commands let 
you use * in path names. The * stands for any sequence of zero or more 
characters. For example,

mv *.c dir1/dir2

moves every file with the .c extension from your current working directory 
to the directory dir1/dir2.

Unlike standard Windows commands, the PTC MKS Toolkit lets you use the 
* character in directory and file names. For example, 

pg */*.c

displays the contents of all files that have the .c extension, in directories 
under your current working directory.

PTC MKS Toolkit commands also let you use ? in path names. The ? stands 
for any single character. For example,

pg abc.?



Wild Card Characters

Basics of the PTC MKS Toolkit 11

displays every file in the current working directory that begins with abc and 
has a one-character file name extension. This could display such files as 

abc.a   abc.b   abc.c   abc.1   acb.2...

The * and ? can be combined:
ls *.?

displays the names of all files under the current working directory that have 
one-character file name extensions.

Again, the ? can be used in directory names as well as file names. For 
example,

ls ???/*

shows all file names under every directory with a three character name.

As you can see, you can refer to every file under a directory by using a single 
*. Standard Windows commands such as dir would require *.*, since the * 
does not match the dot (.) character.

Another useful PTC MKS Toolkit wild card construct consists of a set of 
characters enclosed in square brackets. This construct stands for any of the 
characters in the set. For example,

[bhm]at

could stand for the names bat, hat, and mat. You can indicate a sequence of 
characters by specifying the first and last characters in the sequence, 
separated by a dash (-). For example,

[a-z]

stands for any single lowercase letter. A command like
rm *.[a-z]

removes every file with a suffix consisting of a single lowercase letter.

If the first character inside the square brackets is an exclamation mark (!), 
the construct matches any character that is not inside the brackets. For 
example,

rm [!0-9]*

removes any file the name of which does not start with a digit.



General Purpose Tools

12 PTC MKS Toolkit



Basics of the PTC MKS Toolkit 13

3Text Processing

Text processing refers to entering and editing almost any kind of text on a 
computer, whether the text is a letter or document that a human will read, or 
the code of a program that will only be read by the programmer and the 
computer. The result can be anything from a plain text file (similar to what 
you might produce with a simple typewriter) to a fully typeset book.

PTC MKS Toolkit provides several text processing utilities to handle any 
variety of text processing jobs, from the fully interactive vi editor to non-
interactive text manipulation tools such as c or banner.

Editors
The PTC MKS Toolkit provides a number of editors that allow you to 
change the contents of text files.

The vi Screen 
Editor

vi is a complex and powerful text editing tool. Rather than providing a brief 
outline here, we have instead provided an online on tutorial for this 
command. This tutorial is available in the ROOTDIR/samples/guide 
directory and consists of the following four files, that you should view in the 
order listed using vi itself: 

For more information, see the vi 
reference page in the online PTC 
MKS Toolkit Utilities Reference.

browse.v
edit.v
doc.v
program.v

Line Editors ex is closely related to vi. In fact, you can invoke ex to edit a file with the 
command

vi -e filename



Text Processing

14 PTC MKS Toolkit

The -e indicates that you want to use ex instead of vi. The difference 
between vi and ex is that ex is a line editor. vi displays a screen of text only 
and moves the cursor up and down the screen as you edit things. ex displays 
both text and commands on the screen and never moves up the screen. We 
believe vi is more natural for people to use, but ex is available for people 
who are more comfortable with line editors. 

The ed command is also a line editor. It is similar to ex in many ways. See 
the online ed reference page for more information.

The sed Stream 
Editor

sed is a non-interactive editor. This means that you do not use it in an 
interactive session; you simply provide it with a file containing editing 
commands and it performs the commands in the file. sed is sometimes used 
in shell scripts as described in the Using the MKS KornShell document. It is 
intended for systematic editing, as opposed to the usual editing on the fly 
performed by interactive users. 

Other Word Processing Commands
PTC MKS Toolkit has several other commands which may be useful in 
preparing reports and other kinds of printed material.

Creating 
Banners

The banner command is a novelty item that writes messages in large letters. 
For example, try

banner hello!

You will see the message printed in large letters on your screen.

banner can print several messages at a time. For example, try
banner hello there!

Each separate message comes out on a new set of lines. See what happens if 
you type

banner h e l l o

banner is often used for creating large letter posters. Just redirect the output 
of banner into a file, then print the file on a printer. 

In the last chapter, we piped the output of ls through the pg command. What 
happens if you use

ls | banner

to pipe the output of ls through banner? Try it and see.



Other Word Processing Commands

Basics of the PTC MKS Toolkit 15

Columnation The c command takes normal text and arranges it into columns. The simplest 
version of the command is

c file

This puts the contents of file into columns and displays them on the screen. 
The number of columns is determined by the maximum length of lines in the 
file. The shorter the lines, the more columns may fit on the screen.

If you want to save the columnated output in another file (so that you can 
print the material later), try redirection, as in

c file1 >file2

Since the default action is to display the columnated output on the screen, the 
default line width is 80 characters (the width of a screen). If you are 
preparing output for a device that allows wider lines (for example, a printer 
or a monitor that allows 132-character lines), you can say

c -w 132 file1 >file2

The -w option followed by a number specifies a page width for output. 
Experiment with c to see how this works.

As another example of how to use c, try
ls | c

This pipes the output of ls through c to columnate the output. Try it and see 
what you get.

The -v option orders columns vertically instead of horizontally. Try
ls | c -v

to see the difference.

Document Size The wc command tells you how big a text document is.
wc file file ...

will tell you the number of lines, words, and characters in each file. This is 
particularly handy for writers who get paid by the word!

Since we have piped the output of ls through a number of commands, let's 
do it again. What do you get if you use

ls | wc

to pipe the output of ls through wc? Since ls prints one name per line, the 
number of lines is the number of files and directories under your current 
directory. This is a quick way to count the contents of a directory.



Text Processing

16 PTC MKS Toolkit



Basics of the PTC MKS Toolkit 17

4Record-Keeping

Record-keeping is the process of creating and using lists of information. 
The information can refer to practically anything: a company's accounts 
receivable, the types of animals owned by a zoo, or the set of comic books 
owned by a teenager.

All record-keeping is characterized by two factors.

Records A record contains a number of pieces of information about 
a single item. These pieces of information are called the 
fields of the record. For example, a record describing a 
comic book might contain fields giving the name of the 
book, the issue number, and the month it was published.

Lists A list is a collection of records which are related in some 
way. For example, you might have a list of records that all 
describe comic books. A large list is sometimes called a 
database.

Files containing lists of records may be created in many different ways. One 
of the easiest is to use a text editor like vi. Type in the records one at a time, 
putting each record on a separate line. The fields should always be given in 
the same order. Often, it helps to separate fields with special characters so 
you can tell where one field ends and another begins.

The file ROOTDIR/samples/guide/comic.txt contains a list of records 
describing a comic book collection. Have a look at it, using the pg 
command. You'll see that each line describes a single comic book, giving the 
series name, the issue number, the month of publication, the year of 
publication, and the price. Fields on a line are separated by colon (:) 
characters. 

We'll be using this file to demonstrate a number of PTC MKS Toolkit 
commands that make it easy to keep track of records. The sort of operations 
we will do here can be performed on any record list you might have.



Record-Keeping

18 PTC MKS Toolkit

To make sure that you don't change the original file, you should make a copy 
with a command like

cp $ROOTDIR/samples/guide/comic.txt comics.lst

Then work with the copy rather than the original file.

Sorting Records
When you create a file of records, you usually do not type in the information 
in any particular order. For example, the comic book record file was created 
by picking up an unsorted stack of comic books and typing in information 
for each book as it was found. It is convenient to do things this way when 
entering information; however, it is more convenient to keep lists in some 
useful order after the information has been entered. Therefore we need some 
way to sort the records in a file.

PTC MKS Toolkit offers the sort command for this purpose. sort assumes 
two things:

 Your file contains one record per line. More precisely, there is a single 
`new-line' character between every pair of adjacent records. 

 The fields in a record are separated by recognizable characters. In our 
sample file, we use colons.

To sort a file like our comic book file, use the command
sort comics.lst

This sorts the list and displays the sorted list. Of course, you usually want to 
save the sorted list in a file. To do this, type 

sort comics.lst >filename

where filename is the name of the file where you want to store the sorted list. 
For example,

sort comics.lst >sorted.lst

sorts the file and stores the result in sorted.lst. sort does not change the 
input file.

When you use >filename to redirect sorted output into a file, the output file 
must not be the same as the (unsorted) input file. If you want to overwrite a 
file with its sorted contents, look at the -o option described in sort 
reference page of the online PTC MKS Toolkit Utilities Reference.



Sorting Records

Basics of the PTC MKS Toolkit 19

By default, sort sorts according to all the information on the record, in the 
order given on the record. Since the name of the comic book is the first thing 
on the line, the output is sorted according to comic book name.

Suppose now that we want to sort according to some different piece of 
information. For example, suppose we want to sort by date of publication. 
We do this by specifying sorting keys.

A sorting key tells sort to look at specific fields in a record, instead of 
looking at each record as a whole. A sorting key also tells what kind of 
information is stored in a particular field (an ordinary word, a number, a 
month, etc.) and how that information should be sorted (in ascending or 
descending order).

A sorting key can refer to one or more fields. Fields are specified by number. 
The number of a field is the number of separator characters that must be 
skipped to reach the field. This means that the first field in a record is field 0, 
the field after the first separator character is field 1, and so on. In our comic 
book list, the month is field 2 and the year is field 3. 

A single sort command can have several sorting keys. The most important 
sorting key is given first; less important sorting keys follow. In our example, 
we will sort by year, then by month within year. Therefore the first sorting 
key we give should refer to the year field, and the second to the month field.

A sorting key has two halves. The first half begins with a + character 
followed by the number fields to skip to reach the key. For our first sorting 
key (referring to the year), we will start with +3 (since the year is field 3). 
After the number comes a letter indicating the type of data in the field and 
how the data should be sorted. Some of the possible letters and their 
meanings are listed below. 

  d indicates that the field contains uppercase and/or lowercase letters, 
and/or digits. The field will be sorted in dictionary order, ignoring 
all other characters.

  M indicates that the field contains the name of a month. sort will 
only look at the first three characters of the month, so that 
January, JAN, jan, etc. are all equal.

  n indicates that the field contains an integer (that could be positive or 
negative).

Putting an r after any of these letters tells sort to sort in reverse order (from 
highest to lowest rather than lowest to highest). For example, Mr means to 
sort in the order December, November, October, and so on.

For our sorting key based on the year, we use n. Thus the first half of our 
sorting key is +3n. 



Record-Keeping

20 PTC MKS Toolkit

The second half of a sorting key consists of a - (hyphen or minus sign) 
followed by the number of the field after the field in the sorting key. Thus 
our full sorting key for the year field is

+3n -4

(since the field after the year field is number 4).

Our second sorting key refers to the month field. This key will have the form
+2M -3

A sort command that uses sorting keys needs to know which character is 
being used to separate record fields. This is done with the option -t 
followed by the character used to separate fields within a record. In our case, 
we will write -t:. The full sort command is therefore

sort -t: +3n -4 +2M -3 comics.lst >sorted.lst

Notice that the file to be sorted comes after the various + and - options. This 
is the order that must be used. The redirection construct can come anywhere 
on the line, but is usually put at the end.

As an exercise in the use of sorting keys, try to sort the comics list according 
to price. Then try to sort the comics list in reverse order according to date of 
publication. 

Since sort has so many options that are confusing to remember, we will 
discuss a program called sortgen given as an example in the Using MKS 
AWK document. sortgen will generate a sort command line, given a 
simple description of the sort requirements. For example, given the input:

field separator is :
primary key is field 4
    increasing numeric
secondary key is field 3
    increasing monthname

sortgen outputs the sort command options:
sort -t: +3n -4 +2M -3

Creating Sub-Lists
One of the most common record-keeping operations is obtaining a sub-list of 
a list. For example, you might want to list all the Watchmen comics that 
appear in the main comics list. The command to do this is fgrep.

The simplest form of the fgrep command is
fgrep word file



Creating Sub-Lists

Basics of the PTC MKS Toolkit 21

where word is a particular sequence of characters that you want to find and 
file is your list of records. fgrep will list every line in the file that contains 
the given word. For example,

fgrep Watchmen comics.lst

lists every line in comics.lst that contains the word Watchmen. As another 
example,

fgrep 1986 comics.lst

lists every line in comics.lst that contains the sequence of characters 1986. 
Presumably, this lists all the comics that were published in 1986. 

fgrep Jul:1986 comics.lst

lists all the comics published in July of 1986.

If the string of characters you want to search for contains a blank, put single 
quotes (apostrophes) around the string, as in

fgrep 'Dark Knight' comics.lst

A sub-list created by fgrep can be saved in a file using redirection, as in
fgrep Elektra comics.lst >el.lst

Patterns Our examples of fgrep have displayed the records in a file that contain the 
desired string anywhere in the line. But suppose you want to be more 
specific. Suppose you only want to find records that begin with a certain 
string of characters (instead of having that string anywhere in the line). How 
do you do this?

You do it with a command called egrep. egrep is like fgrep except that it 
uses patterns instead of strings.

One way to understand patterns is to think about the special characters used 
on command lines. Remember that patterns could be used in commands; for 
example: 

rm *.obj

removes all files in the current directory that have the .obj extension. 
Instead of specifying a single file name, we used a special character * which 
represented any file name of the appropriate form.



Record-Keeping

22 PTC MKS Toolkit

In the same way, an egrep pattern uses special characters so that one pattern 
can represent many different strings. 

Note The special characters for egrep patterns are not the same as the 
characters used on command lines, and the mechanisms involved are also 
different: however, patterns and wildcard characters are conceptually similar.

Special characters used in a pattern are called pattern characters. Below we 
list some pattern characters.

^ (caret) stands for the beginning of a line. For example, ^abc is a 
pattern that represents abc at the beginning of a line.

$ (dollar sign) stands for the end of a line. For example, xyz$ is a pattern 
that represents xyz at the end of a line.

. (period) stands for any (single) character. For example, a.c is a 
pattern that represents a, followed by any character, 
followed by c.

* (asterisk) is used to indicate zero or more repetitions of part of a 
pattern. For example, .* indicates zero or more repetitions 
of .. Since the . stands for any character, .* stands for 
any number of characters. For example, ^a.*z$ is a 
pattern that represents a at the beginning of a line, z at the 
end, and any number of characters in between.

A typical egrep command has the form
egrep 'pattern' file

This displays all the records in the file that match the given pattern. For 
example,

egrep '^Superman' comics.lst

displays all the records that begin with the word Superman.
egrep '00$' comics.lst

displays all the records that end in 00.

If you want to use the literal meaning of a pattern character instead of its 
special meaning, put a backslash (\) in front of the character. For example,

egrep '\$1\.00$' comics.lst

finds all the lines that end in $1.00. If we did not put the backslash in front 
of the $ and ., they would be interpreted as having special pattern meanings. 



Finding Changes to a File

Basics of the PTC MKS Toolkit 23

For further information, see the 
regexp reference page in the 
online PTC MKS Toolkit Utilities 
Reference.

PTC MKS Toolkit accepts much more complex patterns than the ones we 
have discussed here. The formal name for such a pattern is a regular 
expression.

Differences 
Between grep & 
egrep

fgrep and egrep are collectively known as the grep commands. In fact, 
the fgrep command is equivalent to

grep -F

and egrep is equivalent to
grep -E

If you examine the PTC MKS Toolkit Utilities Reference, you will notice that 
they are explained together, on the grep reference page. It is worthwhile 
taking a moment to explain how the two are different, and the easiest way to 
do this is to take an example.

fgrep '$1.00' comics.lst

will go through the comics list file and display all the records that contain the 
string $1.00. However,

egrep '$1.00' comics.lst

displays nothing. Why? To egrep, $ is a pattern character standing for the 
end of the line. Thus the egrep command is looking for records where 1.00 
follows the end of the line. Since there is never anything after the end of the 
line (the next line doesn't count), the egrep command can never find a 
record that matches the pattern.

The difference is therefore that fgrep always takes characters literally, 
while egrep gives pattern characters their special meanings. For simple 
searches, fgrep is usually easier to use than egrep, because you don't have 
to worry about special characters.

Finding Changes to a File
Consider the following situation. A warehouse has an `active file' that keeps 
track of current inventory. As goods are brought in, appropriate records are 
added to the file. As orders are shipped out, the records are deleted. At the 
end of the day, the warehouse makes a copy of the active file to keep as a 
permanent journal.



Record-Keeping

24 PTC MKS Toolkit

It would be useful for such a business to be able to compare one day's journal 
to another day's to see what has changed. This can be done with the diff 
command. 

diff oldfile newfile

compares the two files. The output of diff shows lines that are in one file 
but not the other. Lines that are in oldfile but not newfile are printed with < in 
front of them; lines that are in newfile but not oldfile are printed with > in 
front.

As an example, create a copy of vi1.txt with
cp /guide/vi1.txt new.txt

and then use vi to change the first line of new.txt to
London Bridge is falling down

Write out the file and quit vi. Now issue the command
diff vi_junk.txt new.txt

diff will print
1c1
< Little Miss Muffet
---
> London Bridge is falling down

This indicates that the old file contained the line Little Miss Muffet 
where the new file has London Bridge is falling down.

The 1c1 at the beginning of the diff output indicates that line 1 in the old 
file has changed when compared to line 1 in the new file. This is similar to 
commands recognized by the ed text editor, and in fact it is possible to 
instruct diff to output the ed commands you would have to execute to 
change the old file into the new one. This is not important to our current 
discussion; the thing to remember is that diff shows how two files differ.

For more information, see the 
diff reference page in the PTC 
MKS Toolkit Utilities Reference.

Lines that are new are indicated with a a (add lines), while lines that should 
be deleted are indicated with a d (delete).

diff and vdiff32 make it easy to determine what has changed in the time 
that elapsed between saving the two files. The same sort of operation is 
useful in many record-keeping situations, any time you have two different 
versions of the same file and you want to check the differences.

diff shows what must be changed to the first file argument, to make it look 
like the second file argument. Remember this order when you look at the 
output of diff. 



Other Simple Commands

Basics of the PTC MKS Toolkit 25

Checking 
Whole 
Directories

The command
diff -r dir1 dir2

can be used to check whole directories for change. diff compares the files 
under dir1 to the files under dir2, comparing files with the same names. This 
can be useful if you have two directories that hold different versions of the 
same files and subdirectories. For example, you might use it to compare 
back-up files on a floppy disk to the original files on a hard disk.

The -r (for "recursive") option can be used with other commands too. For 
example,

cp -r dir1 dir2

copies all the files and subdirectories from dir1 to dir2.
rm -r dir

removes all the files and subdirectories under dir, then removes dir itself.

Other Simple Commands
PTC MKS Toolkit has several other commands that simplify record-keeping.

head filename ...

displays the first few lines of the given file(s). This is a quick way to find out 
what sort of information a given file contains.

tail filename

displays the last ten lines of the given file. Again, this is a quick way to 
check the contents in a file. In particular, suppose you have a file with 
records sorted according to date. tail will tell you the date of the last 
records in the file, giving an idea of how current the file's contents are. In a 
sorted comic book list, for example, tail could show the most recent 
comics that had been recorded in the file.

The find command lists the names of all the files under a directory that 
have a given characteristic (or set of characteristics). The simplest version of 
the command is 

find dirname

This just displays the names of all files under the given directory (including 
files in subdirectories under the directory).

find dirname -name pattern



Record-Keeping

26 PTC MKS Toolkit

displays the names of all files the names of which have a certain form. For 
example,

find abc -name '*.lst'

lists the names of all files under the directory abc which have the file 
extension.lst. In this way, find lets you locate files quickly, even when you 
have a complicated file system structure, with many directories and 
subdirectories.



Basics of the PTC MKS Toolkit 27

5Programming

The Toolkit was inspired by UNIX, and UNIX is above all a programmer's 
system. The commands of UNIX are almost all aimed at simplifying various 
aspects of programming. As a result, PTC MKS Toolkit commands are also 
strongly slanted towards the needs of a programmer.

UNIX is particularly geared towards the C programming language, and 
therefore the PTC MKS Toolkit also has strong C programming capabilities. 
This doesn't mean that people programming in Java, Fortran, Pascal, etc. are 
out of luck—the PTC MKS Toolkit has many general tools that can help any 
programmer. However, there are also a number of commands that are 
designed especially for the C programmer. In this section, we begin by 
looking at the general commands, then go on to the C related ones.

Editing and Record Keeping
In the chapters on text processing and record-keeping we discussed a 
number of commands that have programming applications. More detailed 
descriptions of these commands are found in those earlier sections; we will 
just cover highlights here.

Before a programmer can run a program, the source code for the program 
must be entered. Naturally, this means using a text editor. You will find that 
the vi text editor is well-suited to the task of typing in code. The online vi 
tutorial discussed in the “Text Processing” chapter describes additional 
features of vi that are explicitly aimed at programmers (for example, 
facilities for invoking a compiler directly from vi). 

A number of record-keeping commands are also helpful. For example, 
suppose you have a program that is split into several source files. For the 
sake of simplicity, we'll assume that the source files all have a .c extension 
and are all stored in the src directory.



Programming

28 PTC MKS Toolkit

You will often want to find out which source files refer to a particular 
variable or function. You can do this simply with

fgrep 'name' src/*.c

This command checks all the appropriate files and displays lines that contain 
the given name. Each line is labelled with the name of the file where the line 
was found. This offers a quick way to find the use of a function or data 
object in source files.

As another example of using record-keeping commands, suppose that you 
are working on a large program and every few days you save all the source 
code for the program on a floppy disk (as a safety precaution). There are 
often times when you want to compare the current versions of your source 
files to one of the saved versions, to find out what changes have been made 
between the two.

diff oldfile newfile

prints out all the differences between two versions of a file, making 
comparisons easy.

The sum command gives a checksum for each file. If applied to two versions 
of what was at one time the same file, sum offers a convenient way to tell if 
the files are still the same. It does not, however, indicate what the differences 
are.

The find, head, and tail commands also have obvious applications to 
programming. For example, suppose you are looking for a particular Basic 
source program but can't remember where it is stored on your disk.

find / -name '*.bas'

searches all the directories on your current device and displays the names of 
all files with the .bas extension.

Timing Programs
The time command built into the MKS KornShell lets you time programs to 
find out how much processor time they actually require. You might use this 
to compare two versions of a program to see if one runs faster than the other. 
From a MKS KornShell prompt, you can run a program with

time command-line

where command-line is a command line that invokes the program you want 
to time. time runs the program, then displays:

 the total time taken by the program;



Creating Symbol Tables

Basics of the PTC MKS Toolkit 29

 the time spent in the operating system (using system service calls);

 the time spent in the user program's own code.

Creating Symbol Tables
A number of PTC MKS Toolkit commands work with executable files that 
contain their own symbol tables. The symbol table format may be the one 
used by the Codeview Symbols of Microsoft C.

Of course, many popular compilers and/or linkers do not use this format. In 
particular, versions of the Microsoft link command do not even store 
symbol tables in the executable file. Instead, link prepares a (text) file 
describing the symbol table (provided that you specify an option asking for 
such a file). By default, the file extension of this `symbol table file' is .map. 

Codeview symbol tables can be removed from an executable file with the 
Toolkit's strip command, as in

strip file.exe

Examining Symbol Tables
The nm command displays the symbol table in compiled code. The file being 
examined must have the extension .obj (indicating an object file), .lib 
(indicating a library), or .exe (indicating an executable file). An executable 
file must contain a symbol table such as the one put out by CodeView.

The format of the nm command is
nm files...

The output lists the names found in the symbol table. Each name is preceded 
by a flag letter which indicates the type of the symbol. For example, 
initialized global data names are marked with a D while uninitialized ones 
are marked with a B. The complete list of flag letters is given in the 
description of nm in the PTC MKS Toolkit Utilities Reference.



Programming

30 PTC MKS Toolkit

Miscellaneous Commands
The size command lets you determine the size of various parts of an object 
module, library, or executable file. Its format is simply

size file

The od command can dump the contents of a file in several different 
formats.

od file

dumps a file in octal.
od -h file

dumps the file in hexadecimal. Both of these may be useful if you want to 
check on the actual contents of a non-text file. Other output formats are 
available; see the od online reference page in the PTC MKS Toolkit Utilities 
Reference.



Basics of the PTC MKS Toolkit 31

Index

B
banner 14

C
c 15
cat 6, 10
Columnation 15
Commands

banner 14
c 15
cat 6
cp 4
df 6
ed 13, 14
egrep 21
ex 13
fgrep 20, 28
find 25, 28
head 25
help 8
lc 3
link 29
ls 3
mv 5
nm 29
od 30
pg 6
rm 5
size 30
sort 18, 19
tail 25
time 28
vdiff 23, 24
vi 13, 23, 27

copy 4

cp 4
Creating Banners 14
CTRL-Q 6
CTRL-S 6

D
del 5
df 6
Differences Between grep & egrep 23
dir 3
Disk Usage 5
Displaying Data 6

E
ed 9, 13
egrep 21, 23
ex 13
Examples

banner 14
cat 6, 10
cp 4, 18
df 6
diff 23–25
ed 9
egrep 22
ex 13
fgrep 20, 23, 28
find 25, 28
grep 23
help 8
lc 3, 7
ls 3, 15
mv 5, 10
nm 29
od 30



Index

32 PTC MKS Toolkit

pg 6, 8, 10
pipes 10
redirection 9
rm 5
size 30
sort 18, 19, 20
Special characters in patterns 21
time 28
vi 13
wc 15
wild cards 10–11

F
fgrep 20, 28
File Changes 23
File Manipulation 4
Files

.lib 29

.map 29

.obj 29
find 25, 28
Finding Changes to a File 23

G
grep 20, 23

H
head 25
help 8
Help with Options 8

K
keys, sorting 19

L
Library files 29
Line Editors 13
link 29
ls 3

M
mv 5

N
nm 29

O
Object files 29
Octal dump 30
od 30
Options

help 8
recursive 25

 7
Output Redirection 9

P
pattern characters 21
Patterns 21
pg 6
Pipes 10
Programming 27–30

Creating Symbol Tables 29
Editing and Record Keeping 27–28
Examining Symbol Tables 29
Timing Programs 28–29

R
Record Keeping 17–26

Lists 17
Records 17
Sorting Records 18–20

recursive options 25
Redirection 9
rm 5

S
sed 14
size 30
sort 18, 19
sortgen 20
sorting keys 19



Index

Basics of the PTC MKS Toolkit 33

Sorting Records 18–20
Special characters in patterns 21
stream editor 14
Sub-Lists 20–23

patterns 21
Symbol Tables 29

T
tail 25
Text Processing 13–15

banner 14
columnization 15

Line Editors 13
sed 14

time 28

V
vdiff 23, 24
vi 13, 23, 27

W
wc 15
Wild Card Characters 10–11


