

Research Report
MKS Toolkit Vs. Cygwin: You Get What You Pay For

Introduction

MKS Toolkit and open source Cygwin both do the same thing: 1) each program

environment provides a Unix like environment that can run on Windows; and, 2) each

program environment allows administrators to manage Unix and Windows systems

using Unix commands. Accordingly, information technology (IT) managers and

administrators can more easily manage Windows environments using familiar Unix

constructs. Further, developers can easily migrate programs from Unix to Windows

using either environment.

Clabby Analytics (that’s me) likes both of these environments. But I also see

substantial differences between the MKS and Cygwin offerings in terms of support,

integration, documentation, knowledge-base maintenance, and services. In this

Research Report, I will share my perspective on some of the differences between these

environments.

My key finding is this: because the Cygwin environment is funded only through donations, the Cygwin
team does not have the kind of funding needed to provide the depth of product extensions, the level of
integration, as extensive a knowledge database, as in-depth educational material, nor the extensive
support that MKS provides with its products. Adopters need to understand these differences when
choosing between these two offerings. If an adopter’s intent is to use a more do-it-yourself environment, I
would recommend Cygwin. But if an adopter wants a more integrated, tested, and better supported
environment, than I’d recommend the MKS environments. Ultimately, you get what you pay for…

The Biggest Difference: What Funding Enables MKS to Do…

The biggest difference between MKS environments and Cygwin lies in the very nature

of each organization’s go-to-market approach. MKS charges license and support fees

for its software; Cygwin accepts donations.

Because MKS charges license and support fees, MKS has a revenue stream that it can

use to perform a good deal of product integration, testing and quality assurance — and

that it can use for support activities (including documentation, maintaining a

knowledge base, and troubleshooting). Because Cygwin does not have a similar

revenue stream, it simply cannot provide the same level of integration, testing or the

same level of support.

As examples of these differences, consider the following:

 The MKS Toolkit has an extensive library with over 2500 Unix commands and

system calls integrated into its product offerings — including often-required

―Perl‖ and ―run‖ commands. For commands and utilities that have not been

integrated in Cygwin’s product set, Cygwin’s website recommends that

administrators visit http://cygutils.fruitbat.org/. Instructions for how to

download and install these additional utilities are also found on this website.

http://cygutils.fruitbat.org/

MKS Toolkit vs. Cygwin: You Get What You Pay For

June, 2009 © 2009 Clabby Analytics Page 2

 From a support perspective, Cygwin will attempt to fix ―valid‖ bugs. MKS has a

full support organization that is chartered with fixing level 1, 2, and 3 bugs.

 From a services perspective, Cygwin does not offer professional services. MKS,

on the other hand, offers a wide variety of services to support its products,

including quick start, planning and assessment, and migration services.

 MKS’s knowledge base is more extensive. And,

 MKS documentation has a more educational/learning oriented pedagogical

approach than Cygwin’s approach (Cygwin’s approach is essentially ―read the

release notes and the user guides and have a nice day…‖).

Again, both of these products will do the job of managing Windows environments using Unix commands
— as well as allow for simplified application migration. The primary difference is that because of its
funding model, MKS can build a more extensive, better integrated, and better supported product than open
source Cygwin can.

A Closer Look: Support

One of the big problems from a support perspective is sorting out whether the support

issue is a ―user problem‖ or if it is a ―product problem‖. MKS has support personnel in

place that can help sort out one from another and provide the needed advice or take

the appropriate action to fix a reported problem.

Note that MKS provides easy access to phone support, email/web request service,

automatic product notifications, product upgrades and patches, and to its enhanced

online support services portfolio.

Cygwin does not provide easy access to phone support (no support phone number is

available on the Cygwin site). Further, a closer look at Cygwin’s approach shows that

Cygwin developers want their users to be very careful about asking ―stupid‖ questions.

At http://cygwin.com/problems.html, Cygwin developers suggest that a user’s first

port-of-call when seeking support should be to visit the Cygwin FAQ and mailing list

archives. If users are unable to resolve their problem, they are instructed to write to

the Cygwin list to see if the community can help resolve the issue.

The Cygwin team also provides the following advice: ―take a moment to read

and understand some very good general advice on how to ask smart questions.

Once you've followed that link and read the advice, please demonstrate that

you've actually gained some smartness by not sending your Cygwin question to

the authors at the link. That would be a really stupid thing to do.‖

As mentioned above, due to its revenue stream MKS has a well-structured support process as well as
support resources charted to address problems that may arise. Because Cygwin does not have a similar
revenue stream, its support policies appear to be a bit more “abrupt”.

http://cygwin.com/problems.html

MKS Toolkit vs. Cygwin: You Get What You Pay For

June, 2009 © 2009 Clabby Analytics Page 3

A Closer Look: Testing

Professional grade software goes through extensive testing and quality assurance (QA)

cycles. Because professional grade software generates revenue that can be used for

QA, bugs and anomalies are identified in these testing cycles, and fixed by the

developers of such software products.

The open source model on the other hand, does not generate the kind of revenue

needed to support rigorous testing. It should be noted, however, that sometimes the

open source community polices itself when it comes to QA testing (but often that

community is small and testing is superficial). Cygwin cannot afford to do the level of

testing and quality assurance that MKS does. And, therefore, it is logical to

extrapolate that bugs will be found after Cygwin releases. And it should be noted that

these bugs will be the responsibility of the user to fix (unless Cygwin agrees to fix the

bugs that have been reported). And given Cygwin’s stand on support, those fixes may

– or may not be – forthcoming.

A Closer Look: Professional Services

Cygwin does not provide professional services – period. So if you choose to adopt

Cygwin, you’re on your own when it comes to modifications and extensions (although

adopters may be able to find some to perform professional services by contacting

users on the Cygwin mailing list). By contrast, MKS has an extensive services

organization, including process consulting, SCM technical consulting, and educational

and training services.

MKS’ Consulting Services organization offers a full range of professional services for

Unix and Windows, including planning services, on-site quick-start training, and

custom consulting services. And, MKS has extensive Unix-to-Windows migration

expertise.

MKS also takes-on customization work. And this is a very important differentiator when compared to
Cygwin. Cygwin is open source code built and maintained by contributors. So, if the contributors take
Cygwin in the direction that the user wants it developed — then great. But if a user wants or needs a new
feature that is not in the plans, then that user can a) develop the products his or herself and submit it for
consideration and packaging in a future Cygwin release; or b) develop the extension buy not share it.
MKS, on the other hand, will perform custom development and integration work on its toolkits.

A Closer Look: Integration

The Cygwin philosophy is to turn Windows into Unix, while the MKS philosophy is to

bring the power of Unix to Windows. To elaborate, the tools in Cygwin are ones that

also exist in Unix. MKS, on the other hand, has over 80 additional commands that

don’t exist in Unix but provide Windows management from the command. These

commands can be found at:

http://www.mkssoftware.com/products/tk/commands.asp?product=win32

The advantage of MKS approach is that it allows those users familiar with Unix to

automate windows functionality using the power of Unix (typically by using command

line scripts). In addition when philosophies differ between Unix and Windows (such as

file permissions for example), MKS handle the difference using the Windows approach.

For example, in the case of file permissions, MKS uses ―chacl‖ and ―lasacl‖ commands

http://www.mkssoftware.com/products/tk/commands.asp?product=win32

MKS Toolkit vs. Cygwin: You Get What You Pay For

Clabby Analytics

http://www.clabbyanalytics.com

Telephone: 001 (207) 846-0498

© 2009Clabby Analytics
All rights reserved
June, 2009

Clabby Analytics is an independent technology

research and analysis organization that specializes in

information infrastructure and business process

integration/management. Other research and analysis

conducted by Clabby Analytics can be found at:

www.ClabbyAnalytics.com.

that allow a user to modify the ACL information on not only files but registry settings

and various other Windows objects. In addition there are ―mkshare‖, ―rmshare‖, and

―lsshare‖ commands that allow one to create, remove and list Windows file shares,

computers and network resources.

Another example is managing user and group information. Managing this information

within Windows is very different than managing the same information within Unix. So

MKS provides ―userinfo‖, ―groupinfo‖ and ―member‖ that allow a user to write scripts

to manage users and groups respectivelyThe way Windows handles log information is

completely different as well. To handle log information, MKS provides an ―eventlog‖

utility such that log information is accessible to a script.

Background applications known as ―daemons‖ on Unix and ―services‖ on Windows is

another area that differs greatly between the two platforms, so MKS provides the

service tool that allows the management of Windows services. A couple of concepts

that don’t exist on Unix are the registry and associations. MKS provides a registry tool

that allows access to the registry. Using ―shexec‖, ―assoc‖, and ―ftype‖ to allow a

user to execute applications based on association, set file extension associations, and

set file type associations respectively.

Summary Observations

Both the Cygwin and MKS products will enable their users to manage across

Unix/Windows environments more easily as well as port applications more easily. The

primary difference between these offerings is each organization’s go-to-market model.

With MKS’s offerings, you are paying for integration, support, and ongoing

maintenance. With Cygwin, you pay nothing — so your expectations should be

lowered accordingly. For do-it-yourselfers who are comfortable downloading tools and

utilities and integrating them into the Cygwin base, who have low training needs —

and who are comfortable relying on a community of users for support — the Cygwin

approach should work just fine.

On the other hand, for users who don’t have the time to figure-it-out themselves, and

who don’t want to spend time laboriously searching for the right utilities or the right

answers to their questions, the MKS offering is a much better approach. Remember:

time is money – and when your organization is spending its money to have developers

deploy, integrate, and extend Cygwin, you are paying for that privilege.

When you pay somebody something to integrate various utilities and commands, build an extensive
knowledge, and provide educational materials and training — you get a completely different, richer product
and a higher degree of support. And this, in a nutshell, is MKS’s key value proposition. Ultimately — you
get what you pay for…

